cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270204 a(n) = n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1.

Original entry on oeis.org

1, 1, 3277, 478297, 15790321, 234750601, 2117950381, 13564461457, 67662254017, 278985273841, 990099009901, 3112703553961, 8854610100337, 23161037562937, 56406126018061, 129172239050401, 280379743338241, 580613195032417, 1153271900252557, 2207200789455481
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 13 2016

Keywords

Comments

a(n) = Phi_28(n) where Phi_k(x) is the k-th cyclotomic polynomial.

Crossrefs

Cf. similar sequences of the type Phi_k(n) listed in A269442.

Programs

  • GAP
    List([0..20], n-> Sum([0..6], j-> (-n^2)^j)); # G. C. Greubel, Apr 24 2019
  • Magma
    [(&+[(-n^2)^j: j in [0..6]]): n in [0..20]]; // G. C. Greubel, Apr 24 2019
    
  • Maple
    a:= n-> add((-n^2)^j, j=0..6):
    seq(a(n), n=0..20);  # Alois P. Heinz, Apr 24 2019
  • Mathematica
    Table[n^12 - n^10 + n^8 - n^6 + n^4 - n^2 + 1, {n, 0, 17}]
    Table[Cyclotomic[28, n], {n, 0, 17}]
  • PARI
    a(n) = polcyclo(28, n); \\ Altug Alkan, Mar 13 2016
    
  • Sage
    [sum((-n^2)^j for j in (0..6)) for n in (0..20)] # G. C. Greubel, Apr 24 2019
    

Formula

G.f.: (1 - 12*x + 3342*x^2 + 435488*x^3 + 9828495*x^4 + 65845800*x^5 + 163388148*x^6 + 163386432*x^7 + 65847087*x^8 + 9827780*x^9 + 435774*x^10 + 3264*x^11 + x^12)/(1 - x)^13.
Sum_{n>=0} 1/a(n) = 2.000307316...