cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A270298 Numbers which are representable as a sum of eight but no fewer consecutive nonnegative integers.

Original entry on oeis.org

44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 484, 508, 524, 548, 556, 572, 596, 604, 628, 652, 668, 676, 692, 716, 724, 748, 764, 772, 788, 796, 836, 844, 884, 892, 908, 916, 932
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 11 + 12 + 13 (not in sequence);
44 = 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
52 = 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10;
68 = 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12.
		

Crossrefs

Formula

A163169(a(n)) = 8. - Ray Chandler, Mar 22 2016
a(n) = 4*A008364(n+1). - Hugo Pfoertner, Feb 04 2021

A270301 Numbers which are representable as a sum of sixteen but no fewer consecutive nonnegative integers.

Original entry on oeis.org

136, 152, 184, 232, 248, 296, 328, 344, 376, 424, 472, 488, 536, 568, 584, 632, 664, 712, 776, 808, 824, 856, 872, 904, 1016, 1048, 1096, 1112, 1192, 1208, 1256, 1304, 1336, 1384, 1432, 1448, 1528, 1544, 1576, 1592, 1688, 1784, 1816, 1832, 1864, 1912, 1928
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			136 = 1 + 2 + 3 + ... + 14 + 15 + 16;
152 = 2 + 3 + 4 + ... + 15 + 16 + 17;
169 = 3 + 4 + 5 + ... + 16 + 17 + 18 = 84 + 85 (not in sequence);
184 = 4 + 5 + 6 + ... + 17 + 18 + 19.
		

Crossrefs

Formula

A163169(a(n)) = 16. - Ray Chandler, Mar 22 2016
a(n) == 0 (mod 8). - Hugo Pfoertner, Feb 04 2021

A270296 Numbers which are representable as a sum of five but no fewer consecutive nonnegative integers.

Original entry on oeis.org

20, 40, 80, 100, 140, 160, 200, 220, 260, 280, 320, 340, 380, 400, 440, 460, 500, 520, 560, 580, 620, 640, 680, 700, 740, 760, 800, 820, 860, 880, 920, 940, 980, 1000, 1040, 1060, 1100, 1120, 1160, 1180, 1220, 1240, 1280, 1300, 1340, 1360, 1400, 1420, 1460
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			15 = 1 + 2 + 3 + 4 + 5 = 7 + 8 (not in sequence);
20 = 2 + 3 + 4 + 5 + 6;
40 = 6 + 7 + 8 + 9 + 10;
80 = 14 + 15 + 16 + 17 + 18.
		

Crossrefs

Formula

A163169(a(n)) = 5. - Ray Chandler, Mar 22 2016
a(n) = 20*A001651(n). - Hugo Pfoertner, Feb 04 2021

A270297 Numbers which are representable as a sum of seven but no fewer consecutive nonnegative integers.

Original entry on oeis.org

28, 56, 112, 196, 224, 308, 364, 392, 448, 476, 532, 616, 644, 728, 784, 812, 868, 896, 952, 1036, 1064, 1148, 1204, 1232, 1288, 1316, 1372, 1456, 1484, 1568, 1624, 1652, 1708, 1736, 1792, 1876, 1904, 1988, 2044, 2072, 2128, 2156, 2212, 2296, 2324, 2408, 2464
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			28 = 1 + 2 + 3 + 4 + 5 + 6 + 7;
35 = 2 + 3 + 4 + 5 + 6 + 7 + 8 = 17 + 18 (not in sequence);
56 = 5 + 6 + 7 + 8 + 9 + 10 + 11;
112 = 13 + 14 + 15 + 16 + 17 + 18 + 19.
		

Crossrefs

Formula

A163169(a(n)) = 7. - Ray Chandler, Mar 22 2016
a(n) = 28*A229829(n). - Hugo Pfoertner, Feb 04 2021

A270299 Numbers which are representable as a sum of eleven but no fewer consecutive nonnegative integers.

Original entry on oeis.org

88, 176, 352, 704, 968, 1144, 1408, 1496, 1672, 1936, 2024, 2288, 2552, 2728, 2816, 2992, 3256, 3344, 3608, 3784, 3872, 4048, 4136, 4576, 4664, 5104, 5192, 5368, 5456, 5632, 5896, 5984, 6248, 6424, 6512, 6688, 6952, 7216, 7304, 7568, 7744, 7832, 8096, 8272
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			66 = 1 + 2 + 3 + ... + 9 + 10 + 11 = 21 + 22 + 23 (not in sequence);
88 = 3 + 4 + 5 + ... + 11 + 12 + 13;
176 = 11 + 12 + 13 + ... + 19 + 20 + 21;
352 = 27 + 28 + 29 + ... + 35 + 36 + 37.
		

Crossrefs

Formula

A163169(a(n)) = 11. - Ray Chandler, Mar 22 2016
a(n) = 88*A236206(n). - Hugo Pfoertner, Feb 04 2021

A270300 Numbers which are representable as a sum of thirteen but no fewer consecutive nonnegative integers.

Original entry on oeis.org

104, 208, 416, 832, 1352, 1664, 1768, 1976, 2392, 2704, 3016, 3224, 3328, 3536, 3848, 3952, 4264, 4472, 4784, 4888, 5408, 5512, 6032, 6136, 6344, 6448, 6656, 6968, 7072, 7384, 7592, 7696, 7904, 8216, 8528, 8632, 8944, 9256, 9568, 9776, 10088, 10504, 10712
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			90 = 1 + 2 + 3 + ... + 11 + 12 + 13 = 29 + 30 + 31 (not in sequence);
104 = 2 + 3 + 4 + ... + 12 + 13 + 14;
208 = 10 + 11 + 12 + ... + 20 + 21 + 22;
416 = 26 + 27 + 28 + ... + 36 + 37 + 38.
		

Crossrefs

Formula

A163169(a(n)) = 13. - Ray Chandler, Mar 22 2016
a(n) == 0 (mod 104). - Hugo Pfoertner, Feb 04 2021

A270302 Numbers which are representable as a sum of seventeen but no fewer consecutive nonnegative integers.

Original entry on oeis.org

272, 544, 1088, 2176, 4352, 4624, 5168, 6256, 7888, 8432, 8704, 9248, 10064, 10336, 11152, 11696, 12512, 12784, 14416, 15776, 16048, 16592, 16864, 17408, 18224, 18496, 19312, 19856, 20128, 20672, 21488, 22304, 22576, 23392, 24208, 25024, 25568, 26384, 27472
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			153 = 1 + 2 + 3 + ... + 15 + 16 + 17 = 76 + 77 (not in sequence);
272 = 8 + 9 + 10 + ... + 22 + 23 + 24;
544 = 24 + 25 + 26 + ... + 38 + 39 + 40;
1088 = 56 + 57 + 58 + ... + 70 + 71 + 72.
		

Crossrefs

Formula

A163169(a(n)) = 17. - Ray Chandler, Mar 22 2016
a(n) == 0 (mod 272). Hugo Pfoertner, Feb 04 2021

A270306 Smallest number which is representable as a sum of n but no fewer consecutive nonnegative integers, or 0 for n > 1 if no such number exists.

Original entry on oeis.org

0, 1, 6, 10, 20, 0, 28, 44, 0, 0, 88, 0, 104, 0, 0, 136, 272, 0, 304, 0, 0, 0, 368, 0, 0, 0, 0, 0, 464, 0, 496, 592, 0, 0, 0, 0, 1184, 0, 0, 0, 1312, 0, 1376, 0, 0, 0, 1504, 0, 0, 0, 0, 0, 1696, 0, 0, 0, 0, 0, 1888, 0, 1952, 0, 0, 2144, 0, 0, 4288, 0, 0, 0, 4544
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			a(2) = 1 = 0 + 1 (two but no fewer terms)
a(3) = 6 = 1 + 2 + 3 (three but no fewer terms)
a(4) = 10 = 1 + 2 + 3 + 4 (four but no fewer terms)
a(5) = 20 = 2 + 3 + 4 + 5 + 6 (five but no fewer terms)
a(6) = 0, since no number needs six but no fewer terms
a(7) = 28 = 1 + 2 + 3 + 4 + 5 + 6 + 7 (seven but no fewer terms)
		

Crossrefs

Formula

a(A111774(n)) = 0.
a(A174090(n)) = A163172(n).
Showing 1-8 of 8 results.