cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A239929 Numbers n with the property that the symmetric representation of sigma(n) has two parts.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 44, 46, 47, 52, 53, 58, 59, 61, 62, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 86, 89, 92, 94, 97, 101, 102, 103, 106, 107, 109, 113, 114, 116, 118, 122, 124, 127, 131, 134, 136, 137, 138
Offset: 1

Views

Author

Omar E. Pol, Apr 06 2014

Keywords

Comments

All odd primes are in the sequence because the parts of the symmetric representation of sigma(prime(i)) are [m, m], where m = (1 + prime(i))/2, for i >= 2.
There are no odd composite numbers in this sequence.
First differs from A173708 at a(13).
Since sigma(p*q) >= 1 + p + q + p*q for odd p and q, the symmetric representation of sigma(p*q) has more parts than the two extremal ones of size (p*q + 1)/2; therefore, the above comments are true. - Hartmut F. W. Hoft, Jul 16 2014
From Hartmut F. W. Hoft, Sep 16 2015: (Start)
The following two statements are equivalent:
(1) The symmetric representation of sigma(n) has two parts, and
(2) n = q * p where q is in A174973, p is prime, and 2 * q < p.
For a proof see the link and also the link in A071561.
This characterization allows for much faster computation of numbers in the sequence - function a239929F[] in the Mathematica section - than computations based on Dyck paths. The function a239929Stalk[] gives rise to the associated irregular triangle whose columns are indexed by A174973 and whose rows are indexed by A065091, the odd primes. (End)
From Hartmut F. W. Hoft, Dec 06 2016: (Start)
For the respective columns of the irregular triangle with fixed m: k = 2^m * p, m >= 1, 2^(m+1) < p and p prime:
(a) each number k is representable as the sum of 2^(m+1) but no fewer consecutive positive integers [since 2^(m+1) < p].
(b) each number k has 2^m as largest divisor <= sqrt(k) [since 2^m < sqrt(k) < p].
(c) each number k is of the form 2^m * p with p prime [by definition].
m = 1: (a) A100484 even semiprimes (except 4 and 6)
(b) A161344 (except 4, 6 and 8)
(c) A001747 (except 2, 4 and 6)
m = 2: (a) A270298
(b) A161424 (except 16, 20, 24, 28 and 32)
(c) A001749 (except 8, 12, 20 and 28)
m = 3: (a) A270301
(b) A162528 (except 64, 72, 80, 88, 96, 104, 112 and 128)
(c) sequence not in OEIS
b(i,j) = A174973(j) * {1,5) mod 6 * A174973(j), for all i,j >= 1; see A091999 for j=2. (End)

Examples

			From _Hartmut F. W. Hoft_, Sep 16 2015: (Start)
a(23) = 52 = 2^2 * 13 = q * p with q = 4 in A174973 and 8 < 13 = p.
a(59) = 136 = 2^3 * 17 = q * p with q = 8 in A174973 and 16 < 17 = p.
The first six columns of the irregular triangle through prime 37:
   1    2    4    6    8   12 ...
  -------------------------------
   3
   5   10
   7   14
  11   22   44
  13   26   52   78
  17   34   68  102  136
  19   38   76  114  152
  23   46   92  138  184
  29   58  116  174  232  348
  31   62  124  186  248  372
  37   74  148  222  296  444
  ...
(End)
		

Crossrefs

Programs

  • Maple
    isA174973 := proc(n)
        option remember;
        local k,dvs;
        dvs := sort(convert(numtheory[divisors](n),list)) ;
        for k from 2 to nops(dvs) do
            if op(k,dvs) > 2*op(k-1,dvs) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    A174973 := proc(n)
        if n = 1 then
            1;
        else
            for a from procname(n-1)+1 do
                if isA174973(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    isA239929 := proc(n)
        local i,p,j,a73;
        for i from 1 do
            p := ithprime(i+1) ;
            if p > n then
                return false;
            end if;
            for j from 1 do
                a73 := A174973(j) ;
                if a73 > n then
                    break;
                end if;
                if p > 2*a73 and n = p*a73 then
                    return true;
                end if;
            end do:
        end do:
    end proc:
    for n from 1 to 200 do
        if isA239929(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Oct 04 2018
  • Mathematica
    (* sequence of numbers k for m <= k <= n having exactly two parts *)
    (* Function a237270[] is defined in A237270 *)
    a239929[m_, n_]:=Select[Range[m, n], Length[a237270[#]]==2&]
    a239929[1, 260] (* data *)
    (* Hartmut F. W. Hoft, Jul 07 2014 *)
    (* test for membership in A174973 *)
    a174973Q[n_]:=Module[{d=Divisors[n]}, Select[Rest[d] - 2 Most[d], #>0&]=={}]
    a174973[n_]:=Select[Range[n], a174973Q]
    (* compute numbers satisfying the condition *)
    a239929Stalk[start_, bound_]:=Module[{p=NextPrime[2 start], list={}}, While[start p<=bound, AppendTo[list, start p]; p=NextPrime[p]]; list]
    a239929F[n_]:=Sort[Flatten[Map[a239929Stalk[#, n]&, a174973[n]]]]
    a239929F[138] (* data *)(* Hartmut F. W. Hoft, Sep 16 2015 *)

Formula

Entries b(i, j) in the irregular triangle with rows indexed by i>=1 and columns indexed by j>=1 (alternate indexing of the example):
b(i,j) = A000040(i+1) * A174973(j) where A000040(i+1) > 2 * A174973(j). - Hartmut F. W. Hoft, Dec 06 2016

Extensions

Extended beyond a(56) by Michel Marcus, Apr 07 2014

A270298 Numbers which are representable as a sum of eight but no fewer consecutive nonnegative integers.

Original entry on oeis.org

44, 52, 68, 76, 92, 116, 124, 148, 164, 172, 188, 212, 236, 244, 268, 284, 292, 316, 332, 356, 388, 404, 412, 428, 436, 452, 484, 508, 524, 548, 556, 572, 596, 604, 628, 652, 668, 676, 692, 716, 724, 748, 764, 772, 788, 796, 836, 844, 884, 892, 908, 916, 932
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			36 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 11 + 12 + 13 (not in sequence);
44 = 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9;
52 = 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10;
68 = 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12.
		

Crossrefs

Formula

A163169(a(n)) = 8. - Ray Chandler, Mar 22 2016
a(n) = 4*A008364(n+1). - Hugo Pfoertner, Feb 04 2021

A270296 Numbers which are representable as a sum of five but no fewer consecutive nonnegative integers.

Original entry on oeis.org

20, 40, 80, 100, 140, 160, 200, 220, 260, 280, 320, 340, 380, 400, 440, 460, 500, 520, 560, 580, 620, 640, 680, 700, 740, 760, 800, 820, 860, 880, 920, 940, 980, 1000, 1040, 1060, 1100, 1120, 1160, 1180, 1220, 1240, 1280, 1300, 1340, 1360, 1400, 1420, 1460
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			15 = 1 + 2 + 3 + 4 + 5 = 7 + 8 (not in sequence);
20 = 2 + 3 + 4 + 5 + 6;
40 = 6 + 7 + 8 + 9 + 10;
80 = 14 + 15 + 16 + 17 + 18.
		

Crossrefs

Formula

A163169(a(n)) = 5. - Ray Chandler, Mar 22 2016
a(n) = 20*A001651(n). - Hugo Pfoertner, Feb 04 2021

A270303 Numbers which are representable as a sum of nineteen but no fewer consecutive nonnegative integers.

Original entry on oeis.org

304, 608, 1216, 2432, 4864, 5776, 6992, 8816, 9424, 9728, 11248, 11552, 12464, 13072, 13984, 14288, 16112, 17632, 17936, 18544, 18848, 19456, 20368, 21584, 22192, 22496, 23104, 24016, 24928, 25232, 26144, 27056, 27968, 28576, 29488, 30704, 31312, 32224, 32528
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			190 = 1 + 2 + 3 + ... + 17 + 18 + 19 = 46 + 47 + 48 + 49 (not in sequence);
304 = 7 + 8 + 9 + ... + 23 + 24 + 25;
608 = 23 + 24 + 25 + ... + 39 + 40 + 41;
1216 = 55 + 56 + 57 + ... + 71 + 72 + 73.
		

Crossrefs

Formula

A163169(a(n)) = 19. - Ray Chandler, Mar 22 2016
a(n) == 0 (mod 304). - Hugo Pfoertner, Feb 04 2021

A270297 Numbers which are representable as a sum of seven but no fewer consecutive nonnegative integers.

Original entry on oeis.org

28, 56, 112, 196, 224, 308, 364, 392, 448, 476, 532, 616, 644, 728, 784, 812, 868, 896, 952, 1036, 1064, 1148, 1204, 1232, 1288, 1316, 1372, 1456, 1484, 1568, 1624, 1652, 1708, 1736, 1792, 1876, 1904, 1988, 2044, 2072, 2128, 2156, 2212, 2296, 2324, 2408, 2464
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			28 = 1 + 2 + 3 + 4 + 5 + 6 + 7;
35 = 2 + 3 + 4 + 5 + 6 + 7 + 8 = 17 + 18 (not in sequence);
56 = 5 + 6 + 7 + 8 + 9 + 10 + 11;
112 = 13 + 14 + 15 + 16 + 17 + 18 + 19.
		

Crossrefs

Formula

A163169(a(n)) = 7. - Ray Chandler, Mar 22 2016
a(n) = 28*A229829(n). - Hugo Pfoertner, Feb 04 2021

A270299 Numbers which are representable as a sum of eleven but no fewer consecutive nonnegative integers.

Original entry on oeis.org

88, 176, 352, 704, 968, 1144, 1408, 1496, 1672, 1936, 2024, 2288, 2552, 2728, 2816, 2992, 3256, 3344, 3608, 3784, 3872, 4048, 4136, 4576, 4664, 5104, 5192, 5368, 5456, 5632, 5896, 5984, 6248, 6424, 6512, 6688, 6952, 7216, 7304, 7568, 7744, 7832, 8096, 8272
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			66 = 1 + 2 + 3 + ... + 9 + 10 + 11 = 21 + 22 + 23 (not in sequence);
88 = 3 + 4 + 5 + ... + 11 + 12 + 13;
176 = 11 + 12 + 13 + ... + 19 + 20 + 21;
352 = 27 + 28 + 29 + ... + 35 + 36 + 37.
		

Crossrefs

Formula

A163169(a(n)) = 11. - Ray Chandler, Mar 22 2016
a(n) = 88*A236206(n). - Hugo Pfoertner, Feb 04 2021

A270300 Numbers which are representable as a sum of thirteen but no fewer consecutive nonnegative integers.

Original entry on oeis.org

104, 208, 416, 832, 1352, 1664, 1768, 1976, 2392, 2704, 3016, 3224, 3328, 3536, 3848, 3952, 4264, 4472, 4784, 4888, 5408, 5512, 6032, 6136, 6344, 6448, 6656, 6968, 7072, 7384, 7592, 7696, 7904, 8216, 8528, 8632, 8944, 9256, 9568, 9776, 10088, 10504, 10712
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			90 = 1 + 2 + 3 + ... + 11 + 12 + 13 = 29 + 30 + 31 (not in sequence);
104 = 2 + 3 + 4 + ... + 12 + 13 + 14;
208 = 10 + 11 + 12 + ... + 20 + 21 + 22;
416 = 26 + 27 + 28 + ... + 36 + 37 + 38.
		

Crossrefs

Formula

A163169(a(n)) = 13. - Ray Chandler, Mar 22 2016
a(n) == 0 (mod 104). - Hugo Pfoertner, Feb 04 2021

A270302 Numbers which are representable as a sum of seventeen but no fewer consecutive nonnegative integers.

Original entry on oeis.org

272, 544, 1088, 2176, 4352, 4624, 5168, 6256, 7888, 8432, 8704, 9248, 10064, 10336, 11152, 11696, 12512, 12784, 14416, 15776, 16048, 16592, 16864, 17408, 18224, 18496, 19312, 19856, 20128, 20672, 21488, 22304, 22576, 23392, 24208, 25024, 25568, 26384, 27472
Offset: 1

Views

Author

Martin Renner, Mar 14 2016

Keywords

Examples

			153 = 1 + 2 + 3 + ... + 15 + 16 + 17 = 76 + 77 (not in sequence);
272 = 8 + 9 + 10 + ... + 22 + 23 + 24;
544 = 24 + 25 + 26 + ... + 38 + 39 + 40;
1088 = 56 + 57 + 58 + ... + 70 + 71 + 72.
		

Crossrefs

Formula

A163169(a(n)) = 17. - Ray Chandler, Mar 22 2016
a(n) == 0 (mod 272). Hugo Pfoertner, Feb 04 2021

A378471 Numbers m whose symmetric representation of sigma(m), SRS(m), has at least 2 parts the first of which has width 1.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 27 2024

Keywords

Comments

Numbers m = 2^k * q, k >= 0 and q > 1 odd, without odd prime factors p < 2^(k+1).
This sequence is a proper subsequence of A238524. Numbers 78 = A370206(1) = A238524(55) and 102 = A237287(72) are not in this sequence since their width pattern (A341969) is 1210121.
A000079 is not a subsequence since SRS(2^k), k>=0, consists of a single part of width 1.
Let m = 2^k * q, k >= 0 and q > 1 odd, be a number in this sequence and s the size of the first part of SRS(m) which has width 1 and consists of 2^(k+1) - 1 legs of width 1. Therefore, s = Sum_{i=1..2^(k+1)-1} a237591(m, i) = a235791(m, 1) - a235791(m, 2^(k+1)) = ceiling((m+1)/1 - (1+1)/2) - ceiling((m+1)/2^(k+1) - (2^(k+1) + 1)/2) = (2^(k+1) - 1)(q+1)/2. In other words, point (m, s) is on the line s(m) = (2^(k+1) - 1)/2^(k+1) * m + (2^(k+1) - 1)/2.
For every odd number m in this sequence, the first part of SRS(m) has size (m+1)/2.
Let u = 2^k * Product_{i=1..PrimePi(2^(k+1)} p_i, where p_i is the i-th prime, and let v be the number of elements in this sequence that are in the set V = {m = 2^k * q | 1 < m <= u } then T(j + t*v, k) = T(j, k) + t*u, 1 <= j and 1 <= t, holds for the elements in column k.

Examples

			a(5) = 10 is in the sequence since SRS(10) = {9, 9} consists of 2 parts of width 1 and of sizes 9 = (2^2 - 1)(5+1)/2.
a(15) = 25 is in the sequence since the first part of SRS(25) = {13, 5, 13} has width 1 and has size 13 = (2^1 - 1)(25+1)/2.
a(28) = 44 is in the sequence since SRS(44) = {42, 42} has width 1 and has size 42 = (2^3 - 1)(11+1)/2.
The upper left hand 11 X 11 section of array T(j, k) shows the j-th number m in this sequence of the form m = 2^k * q with q odd. The first part of SRS(m) of every number in column k consists of 2^(k+1) - 1 legs of width 1.
j\k| 0   1   2    3    4     5     6      7      8       9       10  ...
------------------------------------------------------------------------
1  | 3   10  44   136  592   2144  8384   32896  133376  527872  2102272
2  | 5   14  52   152  656   2272  8768   33664  133888  528896  2112512
3  | 7   22  68   184  688   2336  8896   34432  138496  531968  2118656
4  | 9   26  76   232  752   2528  9536   34688  140032  537088  2130944
5  | 11  34  92   248  848   2656  9664   35456  142592  538112  2132992
6  | 13  38  116  296  944   2848  10048  35968  144128  543232  2137088
7  | 15  46  124  328  976   3104  10432  36224  145664  544256  2139136
8  | 17  50  148  344  1072  3232  10688  37504  146176  547328  2149376
9  | 19  58  164  376  1136  3296  11072  39296  147712  556544  2161664
10 | 21  62  172  424  1168  3424  11456  39808  150272  558592  2163712
11 | 23  70  188  472  1264  3488  11584  40064  151808  559616  2180096
...
Row 1 is A246956(n), n>=1.
Column 0 is A005408(n) with T(j + 1, 0) = T(j, 0) + 2, n>=1.
Column 1 is A091999(n) with T(j + 2, 1) = T(j, 1) + 12, n>=2.
Column 2 is A270298(n) with T(j + 48, 2) = T(j, 2) + 840, n>=1.
Column 3 is A270301(n) with T(j + 5760, 3) = T(j, 3) + 240240, n>=1.
		

Crossrefs

Programs

  • Mathematica
    (* partsSRS[] and widthPattern[ ] are defined in A377654 *)
    a378471[m_, n_] := Select[Range[m, n], Length[partsSRS[#]]>1&&widthPattern[#][[1;;2]]=={1, 0}&]
    a378471[1, 105]
Showing 1-9 of 9 results.