A270406 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus g.
1, 5, 22, 10, 93, 167, 386, 1720, 483, 1586, 14065, 15018, 6476, 100156, 258972, 56628, 26333, 649950, 3288327, 2668750, 106762, 3944928, 34374186, 66449432, 12317877, 431910, 22764165, 313530000, 1171704435, 792534015, 1744436, 126264820, 2583699888, 16476937840, 26225260226, 4304016990
Offset: 1
Examples
Triangle starts: n\g [0] [1] [2] [3] [4] [1] 1; [2] 5; [3] 22, 10; [4] 93, 167; [5] 386, 1720, 483; [6] 1586, 14065, 15018; [7] 6476, 100156, 258972, 56628; [8] 26333, 649950, 3288327, 2668750; [9] 106762, 3944928, 34374186, 66449432, 12317877; [10] 431910, 22764165, 313530000, 1171704435, 792534015; [11] ...
Links
- Gheorghe Coserea, Rows n = 1..101, flattened
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); Table[Table[Q[n, 2, g], {g, 0, (n+1)/2-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
PARI
N = 10; F = 2; gmax(n) = n\2; Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = { Qset(0, 0, x); for (n = 1, length(Q)-1, for (g = 0, gmax(n), my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
Comments