cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A269924 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.

Original entry on oeis.org

225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-7 terms.

Examples

			Triangle starts:
n\f  [1]           [2]           [3]           [4]
[8]  225225;
[9]  12317877,     12317877;
[10] 351683046,    792534015,    351683046;
[11] 7034538511,   26225260226,  26225260226,  7034538511;
[12] ...
		

Crossrefs

Columns f=1-10 give: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Row sums give A215402 (column 4 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 14; G = 4; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A269925 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.

Original entry on oeis.org

59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-9 terms.

Examples

			Triangle starts:
n\f  [1]             [2]             [3]             [4]
[10] 59520825;
[11] 4304016990,     4304016990;
[12] 15895975422,    354949166565,   158959754226;
[13] 4034735959800,  14805457339920, 14805457339920, 4034735959800;
[14] ...
		

Crossrefs

Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, A288285 f=5, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.
Row sums give A238355 (column 5 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 15; G = 5; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A035309 Triangle read by rows giving number of ways to glue sides of a 2n-gon so as to produce a surface of genus g.

Original entry on oeis.org

1, 1, 2, 1, 5, 10, 14, 70, 21, 42, 420, 483, 132, 2310, 6468, 1485, 429, 12012, 66066, 56628, 1430, 60060, 570570, 1169740, 225225, 4862, 291720, 4390386, 17454580, 12317877, 16796, 1385670, 31039008, 211083730, 351683046, 59520825, 58786, 6466460, 205633428, 2198596400, 7034538511, 4304016990
Offset: 0

Views

Author

Keywords

Comments

Row n contains floor((n+2)/2) terms.
a(n,g) is also the number of unicellular (i.e., 1-faced) rooted maps of genus g with n edges. #(vertices) = n - 2g + 1. Dually, this is the number of 1-vertex maps. Catalan(n)=A000108(n) divides a(n,g)2^g.
From Akhmedov and Shakirov's abstract: By pairwise gluing of sides of a polygon, one produces two-dimensional surfaces with handles and boundaries. We give the number N_{g,L}(n_1, n_2, ..., n_L) of different ways to produce a surface of given genus g with L polygonal boundaries with given numbers of sides n_1, n_2, >..., n_L. Using combinatorial relations between graphs on real two-dimensional surfaces, we derive recursive relations between N_{g,L}. We show that Harer-Zagier numbers appear as a particular case of N_{g,L} and derive a new explicit expression for them. - Jonathan Vos Post, Dec 18 2007

Examples

			Triangle starts:
n\g    [0]        [1]        [2]        [3]        [4]        [5]
[0]    1;
[1]    1;
[2]    2;         1;
[3]    5,         10;
[4]    14,        70,        21;
[5]    42,        420,       483;
[6]    132,       2310,      6468,      1485;
[7]    429,       12012,     66066,     56628;
[8]    1430,      60060,     570570,    1169740,   225225;
[9]    4862,      291720,    4390386,   17454580,  12317877;
[10]   16796,     1385670,   31039008,  211083730, 351683046, 59520825;
[11]   ...
		

Crossrefs

Row sums give A001147(n).
Columns g=0-2 give: A000108, A002802, A006298.
The last entries in the even rows give A035319.

Programs

  • Mathematica
    a[n_, g_] := (2n)!/(n+1)!/(n-2g)! Coefficient[Series[(x/2/Tanh[x/2])^(n+1), {x, 0, n}], x, 2g]; Flatten[DeleteCases[#, 0]& /@ Table[a[n, g], {n, 0, 11}, {g, 0, n}]] (* Jean-François Alcover, Aug 30 2011, after E. T. Akhmedov & Sh. Shakirov *)
  • PARI
    N = 10; F = 1; gmax(n) = n\2;
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
    \\ Gheorghe Coserea, Mar 16 2016

Formula

Let c be the number of cycles that appear in product of a (2n)-cycle and a product of n disjoint transpositions; genus is g = (n-c+1)/2.
The Harer-Zagier formula: 1 + 2*Sum_{g>=0} Sum_{n>=2*g} a(n,g) * x^(n+1) * y^(n-2*g+1) / (2*n-1)!! = (1+x/(1-x))^y.
Equivalently, for n >= 0, Sum_{g=0..floor(n/2)} a(n,g)*y^(n-2*g+1) = (2*n-1)!! * Sum_{k=0..n} 2^k * C(n,k) * C(y,k+1).
(n+2)*a(n+1,g) = (4*n+2)*a(n,g) + (4*n^3-n)*a(n-1,g-1) for n,g > 0, a(0,0)=1 and a(0,g)=0 for g > 0.
The g.f. for column g > 0 is x^(2*g) * A270790(g) * P_g(x) / (1-4*x)^(3*g-1/2), where P_g(x) is the polynomial associated with row g of the triangle A270791. - Gheorghe Coserea, Apr 17 2016

Extensions

More terms and additional comments and references from Valery A. Liskovets, Apr 13 2006
Offset corrected by Gheorghe Coserea, Mar 17 2016

A006295 Number of genus 1 rooted maps with 2 faces with n vertices.

Original entry on oeis.org

10, 167, 1720, 14065, 100156, 649950, 3944928, 22764165, 126264820, 678405090, 3550829360, 18182708362, 91392185080, 452077562620, 2205359390592, 10627956019245, 50668344988068, 239250231713210, 1120028580999440, 5202779260636958, 23998704563581000, 109991785264412452
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, this sequence, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 2 of A269921, column 1 of A270406.

Programs

  • Mathematica
    Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (11 + 12 x + 9 Sqrt[1 - 4 x]) / (4 (4 x - 1)^4), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A006295_ser(N) = {
      my(y = A000108_ser(N+1));  y*(y-1)^3*(y^2 + 15*y - 6)/(y-2)^8;
    };
    Vec(A006295_ser(31)) \\ Gheorghe Coserea, Jun 04 2017
    
  • PARI
    my(x = 'x + O('x^60)); Vec(x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4)) \\ Michel Marcus, Jun 05 2017

Formula

G.f.: x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4). - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A288082 a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 2.

Original entry on oeis.org

483, 15018, 258972, 3288327, 34374186, 313530000, 2583699888, 19678611645, 140725699686, 955708437684, 6216591472728, 38985279745230, 236923660397172, 1401097546161936, 8089830217844928, 45732525474843801, 253705943922820830, 1383896652090932364, 7434748752218650632, 39394773780853063650
Offset: 5

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 2 with n edges and f faces for 1<=f<=10: A006298 f=1, this sequence, A288083 f=3, A288084 f=4, A288085 f=5, A288086 f=6, A288087 f=7, A288088 f=8, A288089 f=9, A288090 f=10.
Column 2 of A269922, column 2 of A270406.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 2, 2];
    Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288082_ser(N) = {
      my(y = A000108_ser(N+1));
      3*y*(y-1)^5*(7*y^4 + 294*y^3 + 309*y^2 - 547*y + 98)/(y-2)^14;
    };
    Vec(A288082_ser(20))
Showing 1-5 of 5 results.