A269924
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.
Original entry on oeis.org
225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8
Triangle starts:
n\f [1] [2] [3] [4]
[8] 225225;
[9] 12317877, 12317877;
[10] 351683046, 792534015, 351683046;
[11] 7034538511, 26225260226, 26225260226, 7034538511;
[12] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269925,
A270406,
A270407,
A270408,
A270409,
A270410,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 14; G = 4; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A269925
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10
Triangle starts:
n\f [1] [2] [3] [4]
[10] 59520825;
[11] 4304016990, 4304016990;
[12] 15895975422, 354949166565, 158959754226;
[13] 4034735959800, 14805457339920, 14805457339920, 4034735959800;
[14] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269924,
A270406,
A270407,
A270408,
A270409,
A270410,
A270411,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 15; G = 5; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A035309
Triangle read by rows giving number of ways to glue sides of a 2n-gon so as to produce a surface of genus g.
Original entry on oeis.org
1, 1, 2, 1, 5, 10, 14, 70, 21, 42, 420, 483, 132, 2310, 6468, 1485, 429, 12012, 66066, 56628, 1430, 60060, 570570, 1169740, 225225, 4862, 291720, 4390386, 17454580, 12317877, 16796, 1385670, 31039008, 211083730, 351683046, 59520825, 58786, 6466460, 205633428, 2198596400, 7034538511, 4304016990
Offset: 0
Triangle starts:
n\g [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 2; 1;
[3] 5, 10;
[4] 14, 70, 21;
[5] 42, 420, 483;
[6] 132, 2310, 6468, 1485;
[7] 429, 12012, 66066, 56628;
[8] 1430, 60060, 570570, 1169740, 225225;
[9] 4862, 291720, 4390386, 17454580, 12317877;
[10] 16796, 1385670, 31039008, 211083730, 351683046, 59520825;
[11] ...
- Gheorghe Coserea, Rows n = 0..200, flattened
- E. T. Akhmedov and Sh. Shakirov, Gluing of Surfaces with Polygonal Boundaries, arXiv:0712.2448 [math.CO], 2007-2008, see p. 1.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
- Benoit Collins, Ion Nechita, and Deping Ye, The absolute positive partial transpose property for random induced states, Random Matrices: Theory Appl. 01, 1250002 (2012); arXiv:1108.1935 [math-ph], 2011.
- I. P. Goulden and A. Nica, A direct bijection for the Harer-Zagier formula, J. Comb. Theory, A, 111, No. 2 (2005), 224-238.
- J. L. Harer and D. B. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math., 85, No.3 (1986), 457-486.
- S. Lando and A. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004, p. 157.
- B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, C. R. Acad. Sci. Paris, Serie I, 333, No.3 (2001), 155-160.
- A. Mironov, A. Morozov, A. Popolitov, and Sh. Shakirov, Summing up perturbation series around superintegrable point, arXiv:2401.14392 [hep-th], 2024.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Theory B 13 (1972), 192-218 (Tab. 1).
- Nikolai Wyderka and Andreas Ketterer, Probing the geometry of correlation matrices with randomized measurements, arXiv:2211.09610 [quant-ph], 2022.
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Jian Zhou, Hermitian One-Matrix Model and KP Hierarchy, arXiv:1809.07951 [math-ph], 2018.
The last entries in the even rows give
A035319.
-
a[n_, g_] := (2n)!/(n+1)!/(n-2g)! Coefficient[Series[(x/2/Tanh[x/2])^(n+1), {x, 0, n}], x, 2g]; Flatten[DeleteCases[#, 0]& /@ Table[a[n, g], {n, 0, 11}, {g, 0, n}]] (* Jean-François Alcover, Aug 30 2011, after E. T. Akhmedov & Sh. Shakirov *)
-
N = 10; F = 1; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
\\ Gheorghe Coserea, Mar 16 2016
A006295
Number of genus 1 rooted maps with 2 faces with n vertices.
Original entry on oeis.org
10, 167, 1720, 14065, 100156, 649950, 3944928, 22764165, 126264820, 678405090, 3550829360, 18182708362, 91392185080, 452077562620, 2205359390592, 10627956019245, 50668344988068, 239250231713210, 1120028580999440, 5202779260636958, 23998704563581000, 109991785264412452
Offset: 3
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
-
Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (11 + 12 x + 9 Sqrt[1 - 4 x]) / (4 (4 x - 1)^4), {x, 0, 40}], x]] (* Vincenzo Librandi, Jun 06 2017 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A006295_ser(N) = {
my(y = A000108_ser(N+1)); y*(y-1)^3*(y^2 + 15*y - 6)/(y-2)^8;
};
Vec(A006295_ser(31)) \\ Gheorghe Coserea, Jun 04 2017
-
my(x = 'x + O('x^60)); Vec(x*(1-sqrt(1-4*x))*(11+12*x+9*sqrt(1-4*x))/(4*(4*x-1)^4)) \\ Michel Marcus, Jun 05 2017
A288082
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 2.
Original entry on oeis.org
483, 15018, 258972, 3288327, 34374186, 313530000, 2583699888, 19678611645, 140725699686, 955708437684, 6216591472728, 38985279745230, 236923660397172, 1401097546161936, 8089830217844928, 45732525474843801, 253705943922820830, 1383896652090932364, 7434748752218650632, 39394773780853063650
Offset: 5
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 2];
Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288082_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^5*(7*y^4 + 294*y^3 + 309*y^2 - 547*y + 98)/(y-2)^14;
};
Vec(A288082_ser(20))
Showing 1-5 of 5 results.
Comments