A270409 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus g.
14, 386, 5868, 2310, 65954, 100156, 614404, 2278660, 570570, 5030004, 36703824, 34374186, 37460376, 472592916, 1059255456, 211083730, 259477218, 5188948072, 22555934280, 16476937840, 1697186964, 50534154408, 375708427812, 647739636160, 111159740692
Offset: 4
Examples
Triangle starts: n\g [0] [1] [2] [3] [4] 14; [5] 386; [6] 5868, 2310; [7] 65954, 100156; [8] 614404, 2278660, 570570; [9] 5030004, 36703824, 34374186; [10] 37460376, 472592916, 1059255456, 211083730; [11] 259477218, 5188948072, 22555934280, 16476937840; [12] ...
Links
- Gheorghe Coserea, Rows n = 4..104, flattened
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Crossrefs
Cf. A270408.
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); T[n_, g_] := Q[n, 5, g]; Table[T[n, g], {n, 4, 12}, {g, 0, Quotient[n-2, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
-
PARI
N = 12; F = 5; gmax(n) = n\2; Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = { Qset(0, 0, x); for (n = 1, length(Q)-1, for (g = 0, gmax(n), my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))); concat(v)
Comments