A269924
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.
Original entry on oeis.org
225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8
Triangle starts:
n\f [1] [2] [3] [4]
[8] 225225;
[9] 12317877, 12317877;
[10] 351683046, 792534015, 351683046;
[11] 7034538511, 26225260226, 26225260226, 7034538511;
[12] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269925,
A270406,
A270407,
A270408,
A270409,
A270410,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 14; G = 4; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A269925
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10
Triangle starts:
n\f [1] [2] [3] [4]
[10] 59520825;
[11] 4304016990, 4304016990;
[12] 15895975422, 354949166565, 158959754226;
[13] 4034735959800, 14805457339920, 14805457339920, 4034735959800;
[14] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269924,
A270406,
A270407,
A270408,
A270409,
A270410,
A270411,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 15; G = 5; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A288085
a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 2.
Original entry on oeis.org
570570, 34374186, 1059255456, 22555934280, 375708427812, 5235847653036, 63648856688592, 694146691745820, 6928413234959820, 64232028100704156, 559373367462490656, 4616545437250956192, 36362952155187558600, 274925536462366808760, 2004633652255211204832, 14152391716870383219492
Offset: 8
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 5, 2];
Table[a[n], {n, 8, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288085_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^8*(108346*y^7 + 1760421*y^6 + 1641979*y^5 - 7296839*y^4 + 2560152*y^3 + 2713196*y^2 - 1525104*y + 132944)/(y-2)^23;
};
Vec(A288085_ser(16))
A270410
Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus g.
Original entry on oeis.org
42, 1586, 31388, 12012, 442610, 649950, 5030004, 17970784, 4390386, 49145460, 344468530, 313530000, 429166584, 5188948072, 11270290416, 2198596400, 3435601554, 65723863196, 276221817810, 196924458720, 25658464260, 729734918432, 5235847653036, 8789123742880, 1480593013900
Offset: 5
Triangle starts:
n\g [0] [1] [2] [3]
[5] 42;
[6] 1586;
[7] 31388, 12012;
[8] 442610, 649950;
[9] 5030004, 17970784, 4390386;
[10] 49145460, 344468530, 313530000;
[11] 429166584, 5188948072, 11270290416, 2198596400;
[12] 3435601554, 65723863196, 276221817810, 196924458720;
[13] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
T[n_, g_] := Q[n, 6, g];
Table[T[n, g], {n, 5, 13}, {g, 0, Quotient[n-3, 2]-1}] // Flatten (* Jean-François Alcover, Oct 18 2018 *)
-
N = 12; F = 6; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)));
concat(v)
A000473
Number of genus 0 rooted maps with 5 faces and n vertices.
Original entry on oeis.org
14, 386, 5868, 65954, 614404, 5030004, 37460376, 259477218, 1697186964, 10596579708, 63663115880, 370293754740, 2095108370600, 11574690111400, 62629794691632, 332742342741090, 1739371969822260, 8961709528660140, 45576855706440520, 229087231033907708
Offset: 4
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
-
CoefficientList[(1/x)(1-Sqrt[1-4x])(17+16x-(10+4x)Sqrt[1-4x])/(1-4x)^(11/2) + O[x]^36, x] (* Jean-François Alcover, Feb 08 2016 *)
-
seq(n)={my(g=sqrt(1-4*x + O(x*x^n))); Vec((1-g)*(17+16*x-(10+4*x)*g)/((1-4*x)^5*g))} \\ Andrew Howroyd, Mar 28 2021
Showing 1-5 of 5 results.
Comments