cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A269924 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.

Original entry on oeis.org

225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-7 terms.

Examples

			Triangle starts:
n\f  [1]           [2]           [3]           [4]
[8]  225225;
[9]  12317877,     12317877;
[10] 351683046,    792534015,    351683046;
[11] 7034538511,   26225260226,  26225260226,  7034538511;
[12] ...
		

Crossrefs

Columns f=1-10 give: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Row sums give A215402 (column 4 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 14; G = 4; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A269925 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.

Original entry on oeis.org

59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-9 terms.

Examples

			Triangle starts:
n\f  [1]             [2]             [3]             [4]
[10] 59520825;
[11] 4304016990,     4304016990;
[12] 15895975422,    354949166565,   158959754226;
[13] 4034735959800,  14805457339920, 14805457339920, 4034735959800;
[14] ...
		

Crossrefs

Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, A288285 f=5, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.
Row sums give A238355 (column 5 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 15; G = 5; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A287046 a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 1.

Original entry on oeis.org

12012, 649950, 17970784, 344468530, 5188948072, 65723863196, 729734918432, 7302676928666, 67173739068760, 576218752277476, 4660202610532480, 35839052357422132, 263868150558327376, 1870153808268516280, 12816868756802256832, 85256107136168684650, 552171259884681058744
Offset: 7

Views

Author

Gheorghe Coserea, Jun 04 2017

Keywords

Crossrefs

Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, this sequence, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Column 6 of A269921, column 1 of A270410.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 6, 1];
    Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 17 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A287046_ser(N) = {
      my(y = A000108_ser(N+1));
      2*y*(y-1)^7*(28457*y^6 + 179171*y^5 - 222214*y^4 - 172512*y^3 + 257232*y^2 - 59904*y - 4224)/(y-2)^20;
    };
    Vec(A287046_ser(17))

A288086 a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 2.

Original entry on oeis.org

4390386, 313530000, 11270290416, 276221817810, 5235847653036, 82234427131416, 1117259292848016, 13518984452463630, 148755268498286436, 1511718920778951024, 14358354462488121408, 128656798319026864068, 1095747149735034238680, 8924653047010981590288, 69866689045523025725664
Offset: 9

Views

Author

Gheorghe Coserea, Jun 05 2017

Keywords

Crossrefs

Rooted maps of genus 2 with n edges and f faces for 1<=f<=10: A006298 f=1, A288082 f=2, A288083 f=3, A288084 f=4, A288085 f=5, this sequence, A288087 f=7, A288088 f=8, A288089 f=9, A288090 f=10.
Column 6 of A269922, column 2 of A270410.
Cf. A000108.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    a[n_] := Q[n, 6, 2];
    Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Oct 18 2018 *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288086_ser(N) = {
      my(y = A000108_ser(N+1));
      6*y*(y-1)^9*(2211997*y^8 + 32071458*y^7 + 27414609*y^6 - 154896511*y^5 + 58087530*y^4 + 94331624*y^3 - 68497296*y^2 + 8775424*y + 1232896)/(y-2)^26;
    };
    Vec(A288086_ser(15))

A270411 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus g.

Original entry on oeis.org

132, 6476, 160648, 60060, 2762412, 3944928, 37460376, 129726760, 31039008, 429166584, 2908358552, 2583699888, 4331674512, 50534154408, 106853266632, 20465052608, 39599553708, 729734918432, 2979641557620, 2079913241120
Offset: 6

Views

Author

Gheorghe Coserea, Mar 17 2016

Keywords

Comments

Row n contains floor((n-4)/2) terms.

Examples

			Triangle starts:
n\g    [0]              [1]              [2]              [3]
[6]    132;
[7]    6476;
[8]    160648,          60060;
[9]    2762412,         3944928;
[10]   37460376,        129726760,       31039008;
[11]   429166584,       2908358552,      2583699888;
[12]   4331674512,      50534154408,     106853266632,    20465052608;
[13]   39599553708,     729734918432,    2979641557620,   2079913241120;
[14]   ...
		

Crossrefs

Cf. A270410.

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    T[n_, g_] := Q[n, 7, g];
    Table[T[n, g], {n, 6, 13}, {g, 0, Quotient[n-4, 2]-1}] // Flatten
  • PARI
    N = 13; F = 7; gmax(n) = n\2;
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F)));
    concat(v)

A000502 Number of genus 0 rooted maps with 6 faces and n vertices.

Original entry on oeis.org

42, 1586, 31388, 442610, 5030004, 49145460, 429166584, 3435601554, 25658464260, 181055975100, 1218601601672, 7880146275092, 49238911113224, 298652277299880, 1764885293279472, 10192638073849554, 57674223198273444, 320430129184331628, 1751190732477786600, 9428906326013866076
Offset: 5

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Column 6 of A269920.
Column 0 of A270410.

Programs

  • Mathematica
    CoefficientList[ x(1-Sqrt[1-4x])(105+92x-(84+76x)Sqrt[1-4x])/(1-4x)^7/x^2 + O[x]^30, x] (* Jean-François Alcover, Feb 09 2016 *)
  • PARI
    seq(n)={my(g=sqrt(1-4*x + O(x*x^n))); Vec((1-g)*(105+92*x - (84+76*x)*g)/((1-4*x)^7))} \\ Andrew Howroyd, Mar 28 2021

Formula

G.f.: x^4*(1-sqrt(1-4*x))*(105+92*x-(84+76*x)*sqrt(1-4*x))/(1-4*x)^7. - Sean A. Irvine, Nov 14 2010

Extensions

More terms from Sean A. Irvine, Nov 14 2010
Showing 1-6 of 6 results.