A270411 Triangle read by rows: T(n,g) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus g.
132, 6476, 160648, 60060, 2762412, 3944928, 37460376, 129726760, 31039008, 429166584, 2908358552, 2583699888, 4331674512, 50534154408, 106853266632, 20465052608, 39599553708, 729734918432, 2979641557620, 2079913241120
Offset: 6
Examples
Triangle starts: n\g [0] [1] [2] [3] [6] 132; [7] 6476; [8] 160648, 60060; [9] 2762412, 3944928; [10] 37460376, 129726760, 31039008; [11] 429166584, 2908358552, 2583699888; [12] 4331674512, 50534154408, 106853266632, 20465052608; [13] 39599553708, 729734918432, 2979641557620, 2079913241120; [14] ...
Links
- Gheorghe Coserea, Rows n = 6..106, flattened
- Sean R. Carrell, Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
Crossrefs
Cf. A270410.
Programs
-
Mathematica
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0; Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1) ((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3) (2n-2) (2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]); T[n_, g_] := Q[n, 7, g]; Table[T[n, g], {n, 6, 13}, {g, 0, Quotient[n-4, 2]-1}] // Flatten
-
PARI
N = 13; F = 7; gmax(n) = n\2; Q = matrix(N + 1, N + 1); Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) }; Qset(n, g, v) = { Q[n+1, g+1] = v }; Quadric({x=1}) = { Qset(0, 0, x); for (n = 1, length(Q)-1, for (g = 0, gmax(n), my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g), t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1), t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g, (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i)))); Qset(n, g, (t1 + t2 + t3) * 6/(n+1)))); }; Quadric('x + O('x^(F+1))); v = vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))); concat(v)
Comments