A270704 Even 14-gonal (or tetradecagonal) numbers.
0, 14, 76, 186, 344, 550, 804, 1106, 1456, 1854, 2300, 2794, 3336, 3926, 4564, 5250, 5984, 6766, 7596, 8474, 9400, 10374, 11396, 12466, 13584, 14750, 15964, 17226, 18536, 19894, 21300, 22754, 24256, 25806, 27404, 29050, 30744, 32486, 34276, 36114, 38000
Offset: 0
Links
- OEIS Wiki, Figurate numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1)
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{3, -3, 1}, {0, 14, 76}, 41] Table[2 n (12 n - 5), {n, 0, 40}] PolygonalNumber[14,Range[0,80,2]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 12 2017 *)
-
PARI
concat(0, Vec(2*x*(7 + 17*x)/(1 - x)^3 + O(x^60))) \\ Michel Marcus, Mar 22 2016
Formula
G.f.: 2*x*(7 + 17*x)/(1 - x)^3.
E.g.f.: 2*exp(x)*x*(7 + 12*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*n*(12*n - 5).
Sum_{n>=1} 1/a(n) = (Pi - sqrt(3)*Pi + sqrt(3)*log(27) + sqrt(3)*log(64) + log(1728) + 6*log(sqrt(3)-1) + 2*sqrt(3)*log(sqrt(3)-1) - 6*log(sqrt(3)+1) - 2*sqrt(3)*log(sqrt(3)+1))/(20 + 20*sqrt(3)) = 0.102542837854…
Comments