cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A270713 Numbers that are equal to the product of the number of divisors of their first k powers, for some k.

Original entry on oeis.org

1, 2, 225, 4050, 66528, 113400, 120960, 92802153185280, 726046074908612178739200000000000, 3524292573661555639437312000000000000, 2308850758786565168980497090478080000000000, 142039354014714204088514497565910023710398021722450165760000000000000000
Offset: 1

Views

Author

Paolo P. Lava, Mar 22 2016

Keywords

Comments

a(2) = 2 is the only prime term possible, since the product of tau(p^i) is always even, and 2 is the only even prime. - Michael De Vlieger, Mar 27 2016
The corresponding k are: 1, 1, 2, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5. - Michel Marcus, Apr 08 2016; updated by Max Alekseyev, Jun 11 2025

Examples

			d(4050) * d(4050^2) = 30 * 135 = 4050;
d(66528) * d(66528^2) = 96 * 693 = 66528.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,k,n;
    for n from 1 to q do a:=tau(n); k:=1;
    while a
    				
  • Mathematica
    Select[Insert[Complement[Range@ #, Prime@ Range@ PrimePi@ #] &[2 10^5], 2, 2], Function[k, AnyTrue[Range@ 3, Product[DivisorSigma[0, k^i], {i, #}] == k &]]] (* Michael De Vlieger, Mar 25 2016 *)
  • PARI
    isok(m) = my(k = 1, prd = 1); while (prd < m, prd *= numdiv(m^k); k++); prd == m; \\ Michel Marcus, Apr 08 2016, Jun 12 2025

Extensions

a(8)-a(10) from Hiroaki Yamanouchi, Apr 07 2016
a(11)-a(14) from Max Alekseyev, Jun 10 2025