cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A159233 Number of edge colorings of the Petersen graph.

Original entry on oeis.org

0, 0, 0, 0, 49920, 18936480, 1293857280, 34839270480, 518880929280, 5122755187200, 37376074229760, 216261381584160, 1041571537839360, 4323020652281760, 15864787390932480, 52496402135289840, 159036030441200640, 446469968164496640, 1172916400659517440
Offset: 0

Views

Author

Alois P. Heinz, Apr 06 2009

Keywords

Comments

The Petersen graph G is a cubic symmetric graph on 10 vertices and 15 edges with edge chromatic number 4. a(n) is also the number of (vertex) n-colorings of L(G), the line graph (or interchange graph) of G.
"An edge coloring of a graph G is a coloring of the edges of G such that adjacent edges (or the edges bounding different regions) receive different colors. An edge coloring containing the smallest possible number of colors for a given graph is known as a minimum edge coloring." - Eric Weisstein, Edge Coloring.

Crossrefs

Cf. A270842 for edge colorings under the automorphisms of the Petersen graph. A296913.

Programs

  • Maple
    a:= n-> n^15 -30*n^14 +425*n^13 -3780*n^12 +23658*n^11 -110594*n^10 +399500*n^9 -1136005*n^8 +2560246*n^7 -4553907*n^6 +6285354*n^5 -6504300*n^4 +4739880*n^3 -2156064*n^2 +455616*n: seq(a(n), n=0..20);
  • Mathematica
    Table[n^15 - 30 n^14 + 425 n^13 - 3780 n^12 + 23658 n^11 - 110594 n^10 + 399500 n^9 - 1136005 n^8 + 2560246 n^7 - 4553907 n^6 + 6285354 n^5 - 6504300 n^4 + 4739880 n^3 - 2156064 n^2 + 455616 n, {n, 0, 18}] (* Michael De Vlieger, Mar 27 2016 *)
  • PARI
    a(n)=prod(i=0,3,n-i)*(n^11 -24*n^10 +270*n^9 -1890*n^8 +9204*n^7 -32960*n^6 +89156*n^5 -183285*n^4 +282060*n^3 -310476*n^2 +220128*n -75936) \\ Charles R Greathouse IV, Nov 28 2012

Formula

a(n) = n^15 -30*n^14 + ... (see Maple program).
G.f.: 240 * x^4 * (120539*x^11 +4939568*x^10 +71258450*x^9 +441713760*x^8 +1285299570*x^7 +1834236432*x^6 +1296079344*x^5 +442507920*x^4 +68258235*x^3 +4153600*x^2 +75574*x +208) / (x-1)^16. - Colin Barker, Nov 28 2012

A270843 Number of nonisomorphic edge colorings of the Petersen graph with exactly n colors.

Original entry on oeis.org

1, 394, 122601, 8510140, 210940745, 2524556538, 17167621086, 72787256640, 202996629360, 382918536000, 492133561920, 424994169600, 236107872000, 76281004800, 10897286400
Offset: 1

Views

Author

Marko Riedel, Mar 24 2016

Keywords

Comments

This is zero when n is more than fifteen because only fifteen edges are available.
These are not colorings in the strict sense, since there is no requirement that adjacent edges have different colors. - N. J. A. Sloane, Mar 28 2016
The value for n=15 is 15!/120 because all orbits are the same size namely 120 (order of the symmetric group on five elements) when each of the 15 edges has a unique color. - Marko Riedel, Mar 28 2016

Crossrefs

Formula

Cycle index of the automorphisms acting on the edges is (1/120)*S[1]^15+(5/24)*S[2]^6*S[1]^3+(1/4)*S[4]^3*S[2]*S[1]+(1/6)*S[3]^5+(1/6)*S[3]*S[6]^2+(1/5)*S[5]^3.
Inclusion-exclusion yields a(n) = sum(C(n, q)*(-1)^q*A270842(n - q), q = 0 .. n)
Showing 1-2 of 2 results.