A270857 Decimal expansion of Sum_{n >= 1} G_n/n^2, where G_n are Gregory's coefficients.
4, 8, 2, 6, 4, 4, 2, 2, 1, 6, 2, 0, 4, 6, 2, 6, 1, 2, 3, 7, 9, 4, 2, 8, 3, 9, 1, 1, 4, 8, 5, 7, 5, 7, 7, 3, 9, 7, 0, 1, 2, 0, 3, 9, 6, 2, 7, 5, 6, 6, 5, 6, 7, 0, 5, 0, 2, 3, 0, 1, 6, 5, 1, 6, 2, 9, 5, 1, 5, 8, 0, 9, 1, 0, 7, 1, 8, 2, 0, 0, 9, 7, 6, 2, 4, 3, 0, 1, 7, 9, 5, 1, 1, 6, 5, 3, 4, 3, 0, 1, 5, 3, 7, 3
Offset: 0
Examples
0.4826442216204626123794283911485757739701203962756656...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Programs
-
Maple
evalf(int((Li(1+x)-gamma-ln(x))/x, x = 0..1), 120);
-
Mathematica
RealDigits[N[Integrate[(LogIntegral[1+x]-EulerGamma-Log[x])/x,{x,0,1}],150]][[1]]
Formula
Equals integral_{x=0..1} (li(1+x) - gamma - log(x))/x dx, where li(x) is the integral logarithm.
Extensions
Mathematica program corrected by Harvey P. Dale, Jul 05 2022
Comments