A271027 a(n) = 3661529 + 11184810*n.
3661529, 14846339, 26031149, 37215959, 48400769, 59585579, 70770389, 81955199, 93140009, 104324819, 115509629, 126694439, 137879249, 149064059, 160248869, 171433679, 182618489, 193803299, 204988109, 216172919, 227357729, 238542539, 249727349, 260912159, 272096969, 283281779, 294466589
Offset: 0
Examples
a(1) = 3661529 + 11184810*1 = 14846339.
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Magma
[3661529 + 11184810*n : n in [0..40]]; // Wesley Ivan Hurt, Apr 02 2016
-
Maple
A271027:=n->3661529 + 11184810*n: seq(A271027(n), n=0..40); # Wesley Ivan Hurt, Apr 02 2016
-
Mathematica
CoefficientList[Series[(3661529 + 7523281 x)/(1 - x)^2, {x, 0, 26}], x] (* Michael De Vlieger, Mar 29 2016 *) LinearRecurrence[{2,-1},{3661529,14846339},30] (* Harvey P. Dale, Sep 10 2019 *)
-
PARI
a(n) = 3661529 + 11184810*n;
-
PARI
x='x+O('x^99); Vec((3661529+7523281*x)/(1-x)^2)
-
Python
for n in range(0,100):print(3661529+11184810*n) # Soumil Mandal, Apr 03 2016
Formula
G.f.: (3661529 + 7523281*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>1.
Comments