A271100 Triangular array read by rows: T(n, k) = k-th largest member of lexicographically earliest Wieferich n-tuple that contains no duplicate members, read by rows, or T(n, k) = 0 if no Wieferich n-tuple exists.
0, 1093, 2, 71, 11, 3, 3511, 19, 13, 2, 359, 331, 71, 11, 3, 359, 331, 307, 71, 11, 3, 359, 331, 307, 71, 19, 11, 3, 863, 359, 331, 71, 23, 13, 11, 3, 863, 359, 331, 307, 71, 19, 13, 11, 3, 863, 467, 359, 331, 307, 71, 19, 13, 11, 3
Offset: 1
Examples
For n = 1: There is no Wieferich singleton (1-tuple), because no prime p satisfies the congruence p^(p-1) == 1 (mod p^2), so T(1, 1) = 0. For n = 4: The primes 3511, 19, 13, 2 satisfy the congruences 3511^(19-1) == 1 (mod 19^2), 19^(13-1) == 1 (mod 13^2), 13^(2-1) == 1 (mod 2^2) and 2^(3511-1) == 1 (mod 3511^2) and thus form a "Wieferich quadruple". Since this is the lexicographically earliest such set of primes, T(4, 1..4) = 3511, 19, 13, 2. Triangle starts: n=1: 0; n=2: 1093, 2; n=3: 71, 11, 3; n=4: 3511, 19, 13, 2; n=5: 359, 331, 71, 11, 3; n=6: 359, 331, 307, 71, 11, 3; n=7: 359, 331, 307, 71, 19, 11, 3; n=8: 863, 359, 331, 71, 23, 13, 11, 3; n=9: 863, 359, 331, 307, 71, 19, 13, 11, 3; n=10: 863, 467, 359, 331, 307, 71, 19, 13, 11, 3; ....
Links
- Bruce Leenstra, Table of n, a(n) for n = 1..300
- Wikipedia, Wieferich pair
Programs
-
PARI
ulimupto(u,{llim=2}) = {my(l=List()); forprime(i=nextprime(llim+1),u,if(Mod(llim,i^2)^(i-1)==1,listput(l,i)));l} \\ David A. Corneth, May 14 2016 \\tests if a tuple is a valid Wieferich n-tuple.
-
PARI
istuple(v) = {if(#Set(v)==#v,return(0));for(j=0,(#v-1)!-1, w=vector(#v,k,v[numtoperm(#v,j)[k]]); if(sum(i=2,#w,Mod(w[i-1],w[i]^2)^(w[i]-1)==1)+(Mod(w[1],w[#w])^(w[#w]-1)==1)==#w,return(1)));0} \\ David A. Corneth, May 15 2016
-
Sage
wief = DiGraph([prime_range(3600), lambda p, q: power_mod(p, q-1, q^2)==1]) sc = [[0]] + [sorted(c[1:], reverse=1) for c in wief.all_simple_cycles()] tbl = [sorted(filter(lambda c: len(c)==n, sc))[0] for n in range(1, len(sc[-1]))] for t in tbl: print('n=%d:'% len(t), ', '.join("%s"%i for i in t)) # Bruce Leenstra, May 18 2016
Extensions
a(11)-a(15) from Felix Fröhlich, Apr 26 2016
More terms from Bruce Leenstra, May 18 2016
Comments