A271222 One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 2 mod 3 (except for the initial 0).
0, 2, 5, 5, 59, 221, 221, 1679, 3866, 16988, 56354, 174452, 174452, 705893, 705893, 10271831, 24620738, 110714180, 239854343, 627274832, 2951797766, 2951797766, 2951797766, 65713916984, 159857095811, 442286632292
Offset: 0
Examples
n=2: 5^2 + 2 = 27 == 0 (mod 3^2), and 5 is the only solution from {0, 1, ..., 8} which is congruent to 2 modulo 3. n=3: the only solution of X^2 + 2 == 0 (mod 3^3) with X from {0, ..., 26} and X == 2(mod 3) is 5. The number 22 = A268924(3) also satisfies the first congruence but not the second one: 22 == 1 (mod 3). n=4: the only solution of X^2 + 2 == 0 (mod 3^4) with X from {0, ..., 80} and X == 2 (mod 3) is 59. The number 22 = A268924(4) also satisfies the first congruence but not the second one: 59 == 1 (mod 3).
References
- Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..2095
- Peter Bala, A note on A268924 and A271222, Nov 28 2022.
- Wikipedia, Hensel's Lemma.
Programs
-
Maple
with(padic):D2:=op(3,op([evalp(RootOf(x^2+2),3,20)][2])): 0,seq(sum('D2[k]*3^(k-1)','k'=1..n), n=1..20);
-
PARI
a(n) = if (n, 3^n - truncate(sqrt(-2+O(3^(n)))), 0); \\ Michel Marcus, Apr 09 2016
-
Python
def a271222(n): ary=[0] a, mod = 2, 3 for i in range(n): b=a%mod ary.append(b) a=2*b**2 + b + 4 mod*=3 return ary print(a271222(100)) # Indranil Ghosh, Aug 04 2017, after Ruby
-
Ruby
def A271222(n) ary = [0] a, mod = 2, 3 n.times{ b = a % mod ary << b a = 2 * b * b + b + 4 mod *= 3 } ary end p A271222(100) # Seiichi Manyama, Aug 03 2017
Formula
a(n)^2 + 2 == 0 (mod 3^n), and a(n) == 2 (mod 3). Representatives of the complete residue system {0, 1, ..., 3^n-1} are taken.
Recurrence for n >= 1: a(n) = modp(a(n-1) + 2*(a(n-1)^2 + 2), 3^n), n >= 2, with a(1) = 2. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ... , m-1}.
a(n) = 3^n - A268924(n), n >= 1.
a(n) == A002203(3^n) (mod 3^n). - Peter Bala, Nov 10 2022
Comments