A271223 Digits of one of the two 3-adic integers sqrt(-2).
1, 1, 2, 0, 0, 2, 0, 1, 0, 0, 0, 2, 1, 2, 0, 1, 0, 1, 1, 0, 2, 2, 0, 1, 1, 1, 2, 2, 2, 0, 0, 0, 2, 1, 0, 1, 2, 0, 2, 2, 0, 2, 0, 1, 2, 0, 1, 2, 2, 2, 1, 0, 2, 0, 1, 2, 0, 2, 0, 0, 1, 1, 2, 1, 0, 1, 2, 1, 1, 2, 0
Offset: 0
Examples
a(4) = 0 because 2*22*3 + 6 = 138 == 0 (mod 3). a(4) = - 6*(2*22) (mod 3) = -0*(2*1) (mod 3) = 0. A268924(5) = 22 = 1*3^0 + 1*3^1 + 2*3^2 + 0*3^3 + 0*3^4.
References
- Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, pp. 86 and 77-78.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- BCMATH Congruence Programs, Finding a p-adic square root of a quadratic residue (mod p), p an odd prime.
Programs
-
Maple
# uses properties of the numbers Lucas(3^n) = A006267(n) a := proc(n) option remember; if n = 1 then 1 else irem(a(n-1)^3 + 3*a(n-1), 3^n) end if; end proc: convert(a(70), base, 3); # Peter Bala, Nov 15 2022
-
PARI
a(n) = truncate(sqrt(-2+O(3^(n+1))))\3^n; \\ Michel Marcus, Apr 09 2016
Comments