cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A006267 Continued cotangent for the golden ratio.

Original entry on oeis.org

1, 4, 76, 439204, 84722519070079276, 608130213374088941214747405817720942127490792974404
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    a := proc(n) option remember; if n = 1 then 4 else a(n-1)^3 + 3*a(n-1) end if; end: seq(a(n), n = 1..5); # Peter Bala, Nov 15 2022
  • Mathematica
    c = N[GoldenRatio, 1000]; Table[Round[c^(3^n)], {n, 1, 8}] (* Artur Jasinski, Sep 22 2008 *)
    a = {}; x = 4; Do[AppendTo[a, x]; x = x^3 + 3 x, {n, 1, 10}]; a (* Artur Jasinski, Sep 24 2008 *)
  • PARI
    a(n)=fibonacci(3^n+1) + fibonacci(3^n-1) \\ Andrew Howroyd, Dec 30 2024
    
  • PARI
    a(n)={my(t=1); for(i=1, n, t = t^3 + 3*t); t} \\ Andrew Howroyd, Dec 30 2024

Formula

(1+sqrt(5))/2 = cot(Sum_{n>=0} (-1)^n*acot(a(n))); let b(0) = (1+sqrt(5))/2, b(n) = (b(n-1)*floor(b(n-1))+1)/(b(n-1)-floor(b(n-1))) then a(n) = floor(b(n)). - Benoit Cloitre, Apr 10 2003
a(n) = A000204(3^n). - Benoit Cloitre, Sep 18 2005
a(n) = round(c^(3^n)) where c = GoldenRatio = 1.6180339887498948482... = (sqrt(5)+1)/2 (A001622). - Artur Jasinski, Sep 22 2008
a(n) = a(n-1)^3 + 3*a(n-1), a(0) = 1. - Artur Jasinski, Sep 24 2008
a(n+1) = Product_{k = 0..n} A002813(k). Thus a(n) divides a(n+1). - Peter Bala, Nov 22 2012
Sum_{n>=0} a(n)^2/A045529(n+1) = 1. - Amiram Eldar, Jan 12 2022
a(n) = Product_{k=0..n-1} (Lucas(2*3^k) + 1) (Usiskin, 1973). - Amiram Eldar, Jan 29 2022
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(3^n) for n >= 1.
a(n) == 1 (mod 3) for n >= 1.
a(n+1) == a(n) (mod 3^(n+1)) for n >= 1 (a particular case of the Gauss congruences for the Lucas numbers).
The smallest positive residue of a(n) mod 3^n = A268924(n).
In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to A271223. Cf. A006266. (End)

Extensions

The next term is too large to include.

A268924 One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 1 mod 3 (except for n = 0).

Original entry on oeis.org

0, 1, 4, 22, 22, 22, 508, 508, 2695, 2695, 2695, 2695, 356989, 888430, 4077076, 4077076, 18425983, 18425983, 147566146, 534986635, 534986635, 7508555437, 28429261843, 28429261843, 122572440670, 405001977151
Offset: 0

Views

Author

Wolfdieter Lang, Apr 05 2016

Keywords

Comments

The other approximation for the 3-adic integer sqrt(-2) with numbers 2 (mod 3) is given in A271222.
For the digits of this 3-adic integer sqrt(-2), that is the scaled first differences, see A271223. This 3-adic number has the digits read from the right to the left ...2202101200022211102201101021200010200211 = u.
The companion 3-adic number has digits ...20020121022200011120021121201022212022012 = -u. See A271224.
For details see the W. Lang link ``Note on a Recurrence or Approximation Sequences of p-adic Square Roots'' given under A268922, also for the Nagell reference and Hensel lifting. Here p = 3, b = 2, x_1 = 1 and z_1 = 1.

Examples

			n=2: 4^2 + 2 = 18 == 0 (mod 3^2), and 4 is the only solution from {0, 1, ..., 8} which is congruent to 1 modulo 3.
n=3: the only solution of  X^2 + 2 == 0 (mod 3^3) with X from {0, ..., 26} and X == 1 (mod 3) is 22. The number 5 = A271222(3)  also satisfies the first congruence but not the second one: 5  == 2 (mod 3).
n=4: the only solution of X^2 + 2 == 0 (mod 3^4) with X from {0, ..., 80} and X == 1 (mod 3) is also 22. The number 59 = A271222(4) also satisfies the first congruence but not the second one: 59  == 2 (mod 3).
		

References

  • Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.

Crossrefs

Programs

  • Maple
    with(padic):D1:=op(3,op([evalp(RootOf(x^2+2),3,20)][1])): 0,seq(sum('D1[k]*3^(k-1)','k'=1..n), n=1..20);
    # alternative program based on the Lucas numbers L(3^n) = A006267(n)
    a := proc(n) option remember; if n = 1 then 1 else irem(a(n-1)^3 + 3*a(n-1), 3^n) end if; end: seq(a(n), n = 1..22); # Peter Bala, Nov 15 2022
  • PARI
    a(n) = truncate(sqrt(-2+O(3^(n)))); \\ Michel Marcus, Apr 09 2016
    
  • Python
    def a268924(n):
        ary=[0]
        a, mod = 1, 3
        for i in range(n):
              b=a%mod
              ary.append(b)
              a=b**2 + b + 2
              mod*=3
        return ary
    print(a268924(100)) # Indranil Ghosh, Aug 04 2017, after Ruby
  • Ruby
    def A268924(n)
      ary = [0]
      a, mod = 1, 3
      n.times{
        b = a % mod
        ary << b
        a = b * b + b + 2
        mod *= 3
      }
      ary
    end
    p A268924(100) # Seiichi Manyama, Aug 03 2017
    

Formula

a(n)^2 + 2 == 0 (mod 3^n), and a(n) == 1 (mod 3). Representatives of the complete residue system {0, 1, ..., 3^n-1} are taken.
Recurrence for n >= 1: a(n) = modp(a(n-1) + a(n-1)^2 + 2, 3^n), n >= 2, with a(1) = 1. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ..., m-1}.
a(n) = 3^n - A271222(n), n >= 1.
a(n) == Lucas(3^n) (mod 3^n). - Peter Bala, Nov 10 2022

A271224 Digits of one of the two 3-adic integers sqrt(-2). Here the sequence with first digit 2.

Original entry on oeis.org

2, 1, 0, 2, 2, 0, 2, 1, 2, 2, 2, 0, 1, 0, 2, 1, 2, 1, 1, 2, 0, 0, 2, 1, 1, 1, 0, 0, 0, 2, 2, 2, 0, 1, 2, 1, 0, 2, 0, 0, 2, 0, 2, 1, 0, 2, 1, 0, 0, 0, 1, 2, 0, 2, 1, 0, 2, 0, 2, 2, 1
Offset: 0

Views

Author

Wolfdieter Lang, Apr 05 2016

Keywords

Comments

This is the scaled first difference sequence of A271222. See the formula.
The digits of the other 3-adic integer sqrt(-2), are given in A271223. See also a comment on A268924 for the two 3-adic numbers sqrt(-2), called there u and -u.
a(n) is the unique solution of the linear congruence 2*A271222(n)*a(n) + A271226(n) == 0 (mod 3), n>=1. Therefore only the values 0, 1, and 2 appear. See the Nagell reference given in A268922, eq. (6) on p. 86, adapted to this case.
a(0) = 2 follows from the formula given below.
For details see the Wolfdieter Lang link under A268992.
The first k digits in the base 3 representation of A002203(3^k) = A006266(k) give the first k terms of the sequence. - Peter Bala, Nov 26 2022

Examples

			a(4) = 2 because 2*59*2 + 43 = 279 == 0 (mod 3).
a(4) = - 43*(2*59) (mod 3) = -1*(2*(-1)) (mod 3) = 2.
A271222(5) = 221  = 2*3^0 + 1*3^1 + 0*3^2 + 2*3^3 + 2*3^4.
		

References

  • Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, pp. 86 and 77-78.

Crossrefs

Cf. A268924, A268992, A271222, A271226, A271223 (companion).

Programs

  • PARI
    a(n) = truncate(-sqrt(-2+O(3^(n+1))))\3^n; \\ Michel Marcus, Apr 09 2016

Formula

a(n) = (b(n+1) - b(n))/3^n, n >= 0, with b(n) = A271222(n), n >= 0.
a(n) = - A271226(n)*2*A271222(n) (mod 3), n >= 1. Solution of the linear congruence given above in a comment. See, e.g., Nagell, Theorem 38 pp. 77-78.
A271222(n+1) = sum(a(k)*3^k, k=0..n), n >= 0.

A271222 One of the two successive approximations up to 3^n for the 3-adic integer sqrt(-2). These are the numbers congruent to 2 mod 3 (except for the initial 0).

Original entry on oeis.org

0, 2, 5, 5, 59, 221, 221, 1679, 3866, 16988, 56354, 174452, 174452, 705893, 705893, 10271831, 24620738, 110714180, 239854343, 627274832, 2951797766, 2951797766, 2951797766, 65713916984, 159857095811, 442286632292
Offset: 0

Views

Author

Wolfdieter Lang, Apr 05 2016

Keywords

Comments

The other approximation for the 3-adic integer sqrt(-2) with numbers 1 (mod 3) is given in A268924.
For the digits of this 3-adic integer sqrt(-2), that is the scaled first differences, see A271224. This 3-adic number has the digits read from the right to the left ... 20020121022200011120021121201022212022012 = -u. For the digits of u see A271223.
For details see the W. Lang link ``Note on a Recurrence or Approximation Sequences of p-adic Square Roots'' given under A268922, also for the Nagell reference and Hensel lifting. Here p = 3, b = 2, x_2 = 2 and z_2 = 2.

Examples

			n=2: 5^2 + 2 = 27 == 0 (mod 3^2), and 5 is the only solution from {0, 1, ..., 8} which is congruent to 2 modulo 3.
n=3: the only solution of X^2 + 2 == 0 (mod 3^3) with X from {0, ..., 26} and X == 2(mod 3) is 5. The number 22 = A268924(3) also satisfies the first congruence but not the second one: 22  == 1 (mod 3).
n=4: the only solution of X^2 + 2 == 0 (mod 3^4) with X from {0, ..., 80} and X == 2 (mod 3) is 59. The number 22 = A268924(4) also satisfies the first congruence but not the second one: 59  == 1 (mod 3).
		

References

  • Trygve Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964, p. 87.

Crossrefs

Programs

  • Maple
    with(padic):D2:=op(3,op([evalp(RootOf(x^2+2),3,20)][2])): 0,seq(sum('D2[k]*3^(k-1)','k'=1..n), n=1..20);
  • PARI
    a(n) = if (n, 3^n - truncate(sqrt(-2+O(3^(n)))), 0); \\ Michel Marcus, Apr 09 2016
    
  • Python
    def a271222(n):
          ary=[0]
          a, mod = 2, 3
          for i in range(n):
              b=a%mod
              ary.append(b)
              a=2*b**2 + b + 4
              mod*=3
          return ary
    print(a271222(100)) # Indranil Ghosh, Aug 04 2017, after Ruby
  • Ruby
    def A271222(n)
      ary = [0]
      a, mod = 2, 3
      n.times{
        b = a % mod
        ary << b
        a = 2 * b * b + b + 4
        mod *= 3
      }
      ary
    end
    p A271222(100) # Seiichi Manyama, Aug 03 2017
    

Formula

a(n)^2 + 2 == 0 (mod 3^n), and a(n) == 2 (mod 3). Representatives of the complete residue system {0, 1, ..., 3^n-1} are taken.
Recurrence for n >= 1: a(n) = modp(a(n-1) + 2*(a(n-1)^2 + 2), 3^n), n >= 2, with a(1) = 2. Here modp(a, m) is used to pick the representative of the residue class a modulo m from the smallest nonnegative complete residue system {0, 1, ... , m-1}.
a(n) = 3^n - A268924(n), n >= 1.
a(n) == A002203(3^n) (mod 3^n). - Peter Bala, Nov 10 2022

A318962 Digits of one of the two 2-adic integers sqrt(-7) that ends in 01.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Over the 2-adic integers there are 2 solutions to x^2 = -7, one ends in 01 and the other ends in 11. This sequence gives the former one. See A318960 for detailed information.

Examples

			...10110001110011100100110001100000010110101.
		

Crossrefs

Cf. A318960.
Digits of p-adic integers:
this sequence, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A212152, A212155 (7-adic, (1+sqrt(-3))/2);
A051277, A290558 (7-adic, sqrt(2));
A286838, A286839 (13-adic, sqrt(-1));
A309989, A309990 (17-adic, sqrt(-1)).
Also there are numerous sequences related to digits of 10-adic integers.

Programs

  • PARI
    a(n) = truncate(-sqrt(-7+O(2^(n+2))))\2^n

Formula

a(0) = 1, a(1) = 0; for n >= 2, a(n) = 0 if A318960(n)^2 + 7 is divisible by 2^(n+2), otherwise 1.
a(n) = 1 - A318963(n) for n >= 1.
For n >= 2, a(n) = (A318960(n+1) - A318960(n))/2^n.

Extensions

Corrected by Jianing Song, Aug 28 2019

A318963 Digits of one of the two 2-adic integers sqrt(-7) that ends in 11.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0
Offset: 0

Views

Author

Jianing Song, Sep 06 2018

Keywords

Comments

Over the 2-adic integers there are 2 solutions to x^2 = -7, one ends in 01 and the other ends in 11. This sequence gives the latter one. See A318961 for detailed information.

Examples

			...01001110001100011011001110011111101001011.
		

Crossrefs

Cf. A318961.
Digits of p-adic integers:
A318962, this sequence (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290566 (5-adic, 2^(1/3));
A290563 (5-adic, 3^(1/3));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A212152, A212155 (7-adic, (1+sqrt(-3))/2);
A051277, A290558 (7-adic, sqrt(2));
A286838, A286839 (13-adic, sqrt(-1));
A309989, A309990 (17-adic, sqrt(-1)).
Also there are numerous sequences related to digits of 10-adic integers.

Programs

  • PARI
    a(n) = if(n==1, 1, truncate(sqrt(-7+O(2^(n+2))))\2^n)

Formula

a(0) = a(1) = 1; for n >= 2, a(n) = 0 if A318961(n)^2 + 7 is divisible by 2^(n+2), otherwise 1.
a(n) = 1 - A318962(n) for n >= 1.
For n >= 2, a(n) = (A318961(n+1) - A318961(n))/2^n.

Extensions

Corrected by Jianing Song, Aug 28 2019

A309989 Digits of one of the two 17-adic integers sqrt(-1).

Original entry on oeis.org

4, 2, 10, 5, 12, 16, 12, 8, 13, 3, 14, 0, 6, 1, 0, 15, 1, 8, 14, 5, 7, 16, 14, 1, 5, 13, 9, 6, 5, 12, 16, 15, 9, 16, 14, 12, 16, 1, 3, 6, 4, 10, 15, 5, 16, 12, 2, 1, 5, 4, 0, 15, 2, 11, 14, 9, 5, 1, 11, 16, 15, 7, 5, 6, 14, 3, 12, 0, 0, 11, 12, 13, 9, 5, 4, 16, 13
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

This square root of -1 in the 17-adic field ends with digit 4. The other, A309990, ends with digit 13 (D when written as a 17-adic number).

Examples

			The solution to x^2 == -1 (mod 17^4) such that x == 4 (mod 17) is x == 27493 (mod 17^4), and 27493 is written as 5A24 in heptadecimal, so the first four terms are 4, 2, 10 and 5.
		

Crossrefs

Digits of p-adic square roots:
A318962, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A051277, A290558 (7-adic, sqrt(2));
A321074, A321075 (11-adic, sqrt(3));
A321078, A321079 (11-adic, sqrt(5));
A322091, A322092 (13-adic, sqrt(-3));
A286838, A286839 (13-adic, sqrt(-1));
A322087, A322088 (13-adic, sqrt(3));
this sequence, A309990 (17-adic, sqrt(-1)).

Programs

  • PARI
    a(n) = truncate(sqrt(-1+O(17^(n+1))))\17^n

Formula

a(n) = (A286877(n+1) - A286877(n))/17^n.
For n > 0, a(n) = 16 - A309990(n).

A309990 Digits of one of the two 17-adic integers sqrt(-1).

Original entry on oeis.org

13, 14, 6, 11, 4, 0, 4, 8, 3, 13, 2, 16, 10, 15, 16, 1, 15, 8, 2, 11, 9, 0, 2, 15, 11, 3, 7, 10, 11, 4, 0, 1, 7, 0, 2, 4, 0, 15, 13, 10, 12, 6, 1, 11, 0, 4, 14, 15, 11, 12, 16, 1, 14, 5, 2, 7, 11, 15, 5, 0, 1, 9, 11, 10, 2, 13, 4, 16, 16, 5, 4, 3, 7, 11, 12, 0
Offset: 0

Views

Author

Jianing Song, Aug 26 2019

Keywords

Comments

This square root of -1 in the 17-adic field ends with digit 13 (D when written as a 17-adic number). The other, A309989, ends with digit 4.

Examples

			The solution to x^2 == -1 (mod 17^4) such that x == 13 (mod 17) is x == 56028 (mod 17^4), and 56028 is written as B6ED in heptadecimal, so the first four terms are 13, 14, 6 and 11.
		

Crossrefs

Digits of p-adic square roots:
A318962, A318963 (2-adic, sqrt(-7));
A271223, A271224 (3-adic, sqrt(-2));
A269591, A269592 (5-adic, sqrt(-4));
A210850, A210851 (5-adic, sqrt(-1));
A290794, A290795 (7-adic, sqrt(-6));
A290798, A290799 (7-adic, sqrt(-5));
A290796, A290797 (7-adic, sqrt(-3));
A051277, A290558 (7-adic, sqrt(2));
A321074, A321075 (11-adic, sqrt(3));
A321078, A321079 (11-adic, sqrt(5));
A322091, A322092 (13-adic, sqrt(-3));
A286838, A286839 (13-adic, sqrt(-1));
A322087, A322088 (13-adic, sqrt(3));
A309989, this sequence (17-adic, sqrt(-1)).

Programs

  • PARI
    a(n) = truncate(-sqrt(-1+O(17^(n+1))))\17^n

Formula

a(n) = (A286878(n+1) - A286878(n))/17^n.
For n > 0, a(n) = 16 - A309989(n).

A309474 Digits of one of the two 3-adic integers sqrt(-1/2).

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 2, 0, 1, 1, 1, 0, 2, 1, 2, 0, 1, 2, 0, 1, 0, 0, 1, 2, 0, 2, 1, 1, 1, 2, 2, 2, 1, 0, 1, 2, 1, 2, 1, 1, 2, 1, 2, 0, 0, 1, 2, 1, 1, 1, 0, 1, 0, 1, 2, 1, 2, 1, 2, 2, 0, 2, 1, 0, 1, 2, 1, 0, 2, 1, 2, 1, 0, 2, 1, 2, 2, 0, 2, 1, 1, 2, 0, 2, 0, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 1, 2
Offset: 0

Views

Author

Seiichi Manyama, Aug 04 2019

Keywords

Crossrefs

Programs

  • Maple
    T:= select(t -> padic:-ratvaluep(t,1)=1, [padic:-rootp(x^2+1/2,3,100)]):
    op([1,1,3],T); # Robert Israel, Aug 05 2019
  • PARI
    Vecrev(digits(truncate(sqrt(-1/2+O(3^100))), 3))

Formula

p = ...122121, p^2 = ...111111.
q = A271223 = ...200211, p * q = ...000001.
a(n) = (b(n+1) - b(n))/3^n, with b(n) = A309476(n).

A002000 a(n+1) = a(n)*(a(n)^2 - 3) with a(0) = 7.

Original entry on oeis.org

7, 322, 33385282, 37210469265847998489922, 51522323599677629496737990329528638956583548304378053615581043535682
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n eq 1 select 7 else Self(n-1)^3 - 3*Self(n-1): n in [1..6]]; // Vincenzo Librandi, Feb 09 2017
  • Maple
    a := proc(n) option remember; if n = 0 then 7 else a(n-1)^3 - 3*a(n-1) end if; end;
    seq(a(n), n = 0..4); # Peter Bala, Nov 15 2022
  • Mathematica
    RecurrenceTable[{a[0] == 7, a[n] == a[n - 1]^3 - 3 a[n - 1]}, a, {n, 0, 8}]
    (* Vincenzo Librandi, Feb 09 2017 *)
    NestList[#(#^2-3)&,7,4] (* Harvey P. Dale, Aug 11 2021 *)

Formula

From Peter Bala, Feb 01 2017: (Start)
a(n) = ((7 + sqrt(45))/2)^(3^n) + ((7 - sqrt(45))/2)^(3^n).
a(n) = 2*T(3^n,7/2), where T(n,x) denotes the n-th Chebyshev polynomial of the first kind.
Product_{n >= 0} (1 + 2/(a(n) - 1)) = 3*sqrt(5)/5.
Cf. A001999 and A219161. (End)
From Peter Bala, Nov 15 2022: (Start)
a(n) = Lucas(4*(3^n)).
a(n+1) == a(n) (mod 3^(n+1)) (a particular case of the Gauss congruences for the Lucas numbers).
Conjecture: a(n+1) == a(n) (mod 3^(n+r+2)) for n >= r.
The least positive residue of a(n) mod(3^n) = 3^n - 2 = A058481(n). In the ring of 3-adic integers the limit_{n -> oo} a(n) exists and is equal to -2.
Product_{k = 0..n} (a(k) - 1) = (1/3)*Lucas(6*(3^n)). (End)
Showing 1-10 of 11 results. Next