cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271235 G.f. equals the square root of P(4*x), where P(x) is the g.f. of the partition numbers (A000041).

Original entry on oeis.org

1, 2, 14, 68, 406, 1820, 10892, 48008, 266214, 1248044, 6454116, 29642424, 156638076, 707729176, 3551518936, 16671232784, 81685862790, 375557689292, 1843995831412, 8437648295384, 40779718859796, 188104838512840, 891508943457064, 4091507664092016, 19457793452994012, 88760334081132280, 415942096027738728, 1905990594266105648, 8875964207106121784, 40416438507461834160
Offset: 0

Views

Author

Paul D. Hanna, Apr 02 2016

Keywords

Comments

More formulas and information can be derived from entry A000041.
This sequence is obtained from the generalized Euler transform in A266964 by taking f(n) = 1/2, g(n) = 4^n. - Seiichi Manyama, Apr 20 2018

Examples

			G.f.: A(x) = 1 + 2*x + 14*x^2 + 68*x^3 + 406*x^4 + 1820*x^5 + 10892*x^6 + 48008*x^7 + 266214*x^8 + 1248044*x^9 + 6454116*x^10 +...
where A(x)^2 = P(4*x).
RELATED SERIES.
P(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 + 22*x^8 + 30*x^9 + 42*x^10 + 56*x^11 + 77*x^12 + 101*x^13 + 135*x^14 +...+ A000041(n)*x^n +...
1/A(x)^6 = 1 - 12*x + 320*x^3 - 28672*x^6 + 9437184*x^10 - 11811160064*x^15  + 57174604644352*x^21 +...+ (-1)^n*(2*n+1)*(4*x)^(n*(n+1)/2) +...
		

Crossrefs

Expansion of Product_{n>=1} (1 - ((b^2)*x)^n)^(-1/b): A000041 (b=1), this sequence (b=2), A271236 (b=3), A303135 (b=4), A303136 (b=5).

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[1/Sqrt[1 - (4*x)^k], {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 02 2016 *)
  • PARI
    {a(n) = polcoeff( prod(k=1,n, 1/sqrt(1 - (4*x)^k +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n+1), (4*x)^(k^2) / prod(j=1, k, 1 - (4*x)^j, 1 + x*O(x^n))^2, 1)^(1/2), n))};
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    N=99; x='x+O('x^N); Vec(prod(k=1, N, 1/(1-(4*x)^k)^(1/2))) \\ Altug Alkan, Apr 20 2018

Formula

G.f.: Product_{n>=1} 1/sqrt(1 - (4*x)^n).
Sum_{k=0..n} a(k) * a(n-k) = 4^n * A000041(n), for n>=0, where A000041(n) equals the number of partitions of n.
a(n) ~ 4^(n-1) * exp(sqrt(n/3)*Pi) / (3^(3/8) * n^(7/8)). - Vaclav Kotesovec, Apr 02 2016