A271348 Primes p such that p + 2*k^2 is prime for at least 10 consecutive values of k starting from k=1.
11, 29, 438926021, 1210400879, 7446335849, 31757068151, 33090566651, 33164857769, 40137398219, 45133754591, 46642404071, 100444384301, 114546675671, 144553207691, 159587584529, 161557039991, 166054101539, 210447830009, 227625400031, 236241327599, 254850262949, 272259344081
Offset: 1
Keywords
Examples
11 is a term because 11+2*k^2 gives rise to 10 primes for 10 consecutive values of k starting from 1 (see A050265).
Links
- Eric Weisstein's World of Mathematics, Prime-generating Polynomial
Crossrefs
Programs
-
Mathematica
lst={}; Do[k=1; While[PrimeQ[Prime[n]+2*k^2], k++]; If[k>10, AppendTo[lst, Prime[n]]], {n, 2, 11*10^9}]; lst Select[Prime[Range[107669*10^5]],AllTrue[#+{2,8,18,32,50,72,98,128,162,200},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* The program will take a long time to run *) (* Harvey P. Dale, Jan 24 2021 *)
-
PARI
forprime(n=2, 276241327599, k=1; while(isprime(n+2*k^2), k++); (k>10)&&print1(n, ", "))
Comments