A271390 a(n) = (2*n + 1)^(2*floor((n-1)/2) + 1).
1, 3, 5, 343, 729, 161051, 371293, 170859375, 410338673, 322687697779, 794280046581, 952809757913927, 2384185791015625, 4052555153018976267, 10260628712958602189, 23465261991844685929951, 59938945498865420543457, 177482997121587371826171875, 456487940826035155404146917
Offset: 0
Examples
a(0) = 1; a(1) = 3^1 = 3; a(2) = 5^1 = 5; a(3) = 7^3 = 343; a(4) = 9^3 = 729; a(5) = 11^5 = 161051; a(6) = 13^5 = 371293; a(7) = 15^7 = 170859375; a(8) = 17^7 = 410338673; ... a(10000) = 1.644...*10^43006; ... a(100000) = 8.235...*10^530097, etc. This sequence can be represented as a binary tree: 1 ................../ \.................. 3^1 5^1 7^3......../ \......9^3 11^5....../ \.......13^5 / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ 15^7 17^7 19^9 21^9 23^11 25^11 27^13 29^13
Links
- Ilya Gutkovskiy, Table of n, a(n) for n = 0..75
Programs
-
Maple
A271390:=n->(2*n + 1)^(n - 1/2 - (-1)^n/2): seq(A271390(n), n=0..30); # Wesley Ivan Hurt, Apr 10 2016
-
Mathematica
Table[(2 n + 1)^(2 Floor[(n - 1)/2] + 1), {n, 0, 18}] Table[(2 n + 1)^(n - 1 + (1 + (-1)^(n - 1))/2), {n, 0, 18}]
-
PARI
a(n) = (2*n + 1)^(2*((n-1)\2) + 1); \\ Altug Alkan, Apr 06 2016
-
Python
for n in range(0,10**3):print((int)((2*n+1)**(2*floor((n-1)/2)+1))) # Soumil Mandal, Apr 10 2016
Formula
a(n) = (2*n + 1)^(n - 1 + (1 + (-1)^(n-1))/2).
a(n) = (2*n + 1)^(n - 1/2 - (-1)^n/2). - Wesley Ivan Hurt, Apr 10 2016
Comments