A271527 a(n) = 1000^n + 1.
2, 1001, 1000001, 1000000001, 1000000000001, 1000000000000001, 1000000000000000001, 1000000000000000000001, 1000000000000000000000001, 1000000000000000000000000001, 1000000000000000000000000000001, 1000000000000000000000000000000001
Offset: 0
Examples
a(n), n>0, is the binary representation of A062395(n) n ------------------------------------------ 0 2........................................2 1 1001.....................................9 2 1000001.................................65 3 1000000001.............................513 4 1000000000001.........................4097 5 1000000000000001.....................32769 6 1000000000000000001.................262145 7 1000000000000000000001.............2097153 8 1000000000000000000000001.........16777217 9 1000000000000000000000000001.....134217729
Links
- Ilya Gutkovskiy, Examples of the ordinary generating function for the sequences of the form k^n + m
- Index entries for linear recurrences with constant coefficients, signature (1001,-1000)
Programs
-
Mathematica
Table[1000^n + 1, {n, 0, 11}] LinearRecurrence[{1001, -1000}, {2, 1001}, 12]
-
PARI
x='x+O('x^99); Vec((2-1001*x)/((1-x)*(1-1000*x))) \\ Altug Alkan, Apr 09 2016
-
Python
for n in range(0,10**4):print(1000**n+1) # Soumil Mandal, Apr 10 2016
Comments