cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271527 a(n) = 1000^n + 1.

Original entry on oeis.org

2, 1001, 1000001, 1000000001, 1000000000001, 1000000000000001, 1000000000000000001, 1000000000000000000001, 1000000000000000000000001, 1000000000000000000000000001, 1000000000000000000000000000001, 1000000000000000000000000000000001
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

All terms in this sequence are palindromes (A002113).
Also, A062395 written in base 2 (see example).
a(n) minus one gives the number of nodes at n-th level of a 1000-ary tree.
More generally, the ordinary generating function for sequences of the form k^n + m, is (1 + m - (1 + k*m)*x)/((1 - x)*(1 - k*x)), and the exponential generating function is exp(k*x) + m*exp(x).

Examples

			a(n), n>0, is the binary representation of A062395(n)
n  ------------------------------------------
0  2........................................2
1  1001.....................................9
2  1000001.................................65
3  1000000001.............................513
4  1000000000001.........................4097
5  1000000000000001.....................32769
6  1000000000000000001.................262145
7  1000000000000000000001.............2097153
8  1000000000000000000000001.........16777217
9  1000000000000000000000000001.....134217729
		

Crossrefs

Programs

  • Mathematica
    Table[1000^n + 1, {n, 0, 11}]
    LinearRecurrence[{1001, -1000}, {2, 1001}, 12]
  • PARI
    x='x+O('x^99); Vec((2-1001*x)/((1-x)*(1-1000*x))) \\ Altug Alkan, Apr 09 2016
    
  • Python
    for n in range(0,10**4):print(1000**n+1)
    # Soumil Mandal, Apr 10 2016

Formula

G.f.: (2 - 1001*x)/((1 - x)*(1 - 1000*x)).
E.g.f.: exp(1000*x) + exp(x).
a(n) = 1001*a(n-1) - 1000*a(n-2).
a(n) = A060365(n) + 1.
a(n) = A000533(3n), n>0.
a(n) = A007088(A062395(n)).
A007953(a(n)) = A007395(n).
A000035(a(n)) = A057427(n).
Sum_{n>=0} 1/a(n) = 0.501000001999002...
Lim_{n->infinity} a(n + 1)/a(n) = 1000.