A271619 Twice partitioned numbers where the first partition is strict.
1, 1, 2, 5, 8, 18, 34, 65, 109, 223, 386, 698, 1241, 2180, 3804, 6788, 11390, 19572, 34063, 56826, 96748, 163511, 272898, 452155, 755928, 1244732, 2054710, 3382147, 5534696, 8992209, 14733292, 23763685, 38430071, 62139578, 99735806, 160183001, 256682598
Offset: 0
Keywords
Examples
a(6)=34: {(6);(5)(1),(51);(4)(2),(42);(4)(11),(41)(1),(411);(33);(3)(2)(1),(31)(2),(32)(1),(321);(3)(11)(1),(31)(11),(311)(1),(3111);(22)(2),(222);(21)(2)(1),(22)(11),(211)(2),(221)(1),(2211);(21)(11)(1),(111)(2)(1),(211)(11),(1111)(2),(2111)(1),(21111);(111)(11)(1),(1111)(11),(11111)(1),(111111)}
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..5000 from Alois P. Heinz)
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n>i*(i+1)/2, 0, `if`(n=0, 1, b(n, i-1) +`if`(i>n, 0, b(n-i, i-1)*combinat[numbpart](i)))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Apr 11 2016
-
Mathematica
With[{n = 50}, CoefficientList[Series[Product[(1 + PartitionsP[i] x^i), {i, 1, n}], {x, 0, n}], x]]
Formula
G.f.: Product_{i>=1} (1 + A000041(i) * x^i).
Comments