A271662 Convolution of nonzero pentagonal numbers (A000326) with themselves.
1, 10, 49, 164, 434, 980, 1974, 3648, 6303, 10318, 16159, 24388, 35672, 50792, 70652, 96288, 128877, 169746, 220381, 282436, 357742, 448316, 556370, 684320, 834795, 1010646, 1214955, 1451044, 1722484, 2033104, 2387000, 2788544, 3242393, 3753498, 4327113, 4968804, 5684458
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1)
Crossrefs
Programs
-
Magma
/* From definition: */ P:=func
; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,5)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 13 2016 -
Magma
[(n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 13 2016
-
Mathematica
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 10, 49, 164, 434, 980}, 40] Table[(n + 1) (n + 2) (n + 3) (9 n^2 + 21 n + 20)/120, {n, 0, 40}] With[{nmax = 50}, CoefficientList[Series[(120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
-
PARI
vector(40, n, n--; (n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120) \\ Altug Alkan, Apr 12 2016
Formula
O.g.f.: (1 + 2*x)^2/(1 - x)^6.
E.g.f.: (120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(9*n^2 + 21*n + 20)/120.
Sum_{n>=0} 1/a(n) = 1.13108002...
Extensions
Edited by Bruno Berselli, Apr 13 2016
Comments