A271669 Smallest k > n such that n divides k and n^k == n (mod k).
2, 161038, 6, 12, 10, 30, 14, 56, 18, 30, 22, 132, 26, 182, 30, 48, 34, 306, 38, 380, 42, 66, 46, 552, 50, 130, 54, 84, 58, 870, 62, 992, 66, 102, 70, 180, 74, 1406, 78, 120, 82, 1722, 86, 1892, 90, 138, 94, 2256, 98, 350, 102, 156, 106, 2862, 110, 280, 114, 174, 118, 3540
Offset: 1
Keywords
Examples
Because of the definition of (pseudo)primes to base 2, a(2) is the least element of A006935 greater than 2. - _Altug Alkan_, Apr 12 2016
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Table[SelectFirst[Range[n + 1, 10^6], Function[k, Divisible[k, n] && PowerMod[n, k, k] == Mod[n, k]]], {n, 60}] (* Michael De Vlieger, Apr 12 2016, Version 10 *) skn[n_]:=Module[{k=2n},While[PowerMod[n,k,k]!=n,k=k+n];k]; Array[skn,60] (* Harvey P. Dale, Jan 20 2025 *)
-
PARI
a(n) = {k = n+1; while( !(((k % n)==0) && (Mod(n,k)^k == Mod(n, k))), k++); k;} \\ Michel Marcus, Apr 12 2016
Formula
a(n) = 2n for odd n. - Robert Israel, Apr 12 2016
a(n) = n * A102457(n) for n > 1. - Thomas Ordowski, Apr 13 2016
Extensions
More terms from Michel Marcus, Apr 12 2016