cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A271823 a(n) = binomial(2*n-4,n-1)*(n+3)/n.

Original entry on oeis.org

4, 0, 2, 7, 24, 84, 300, 1089, 4004, 14872, 55692, 209950, 795872, 3031032, 11589240, 44462565, 171085500, 660009840, 2551955340, 9887121090, 38374857840, 149184555000, 580807904040, 2264193450090, 8837215647624, 34529741789904, 135054066707000
Offset: 1

Views

Author

Vladimir Kruchinin, Apr 14 2016

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(2*n-4,n-1)*(n+3)/n: n in [1..30]]; // Vincenzo Librandi, Apr 15 2016
    
  • Mathematica
    Table[Binomial[2 n - 4, n - 1] (n + 3) / n, {n, 45}] (* Vincenzo Librandi, Apr 15 2016 *)
  • Maxima
    taylor((-6*x^2+sqrt(1-4*x)*(4*x+1)+6*x-1)/(2*sqrt(1-4*x)),x,0,27);
    
  • PARI
    lista(nn) = for(n=1, nn, print1(binomial(2*n-4, n-1)*(n+3)/n, ", ")); \\ Altug Alkan, Apr 15 2016

Formula

G.f.: (-6*x^2+sqrt(1-4*x)*(4*x+1)+6*x-1)/(2*sqrt(1-4*x)).
D-finite with recurrence: n*(n+2)*(n-3)*a(n) -2*(n-2)*(2*n-5)*(n+3)*a(n-1)=0. - R. J. Mathar, Jun 07 2016
D-finite with recurrence: n*a(n) +2*(-5*n+7)*a(n-1) +6*(5*n-14)*a(n-2) +12*(-2*n+9)*a(n-3)=0. - R. J. Mathar, Jan 27 2020
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=3} 1/a(n) = 168*Pi^2 - 82262*Pi/(45*sqrt(3)) + 248747/150.
Sum_{n>=3} (-1)^(n+1)/a(n) = 65084*log(phi)/(5*sqrt(5)) - 6048*log(phi)^2 - 70019/50, where phi is the golden ratio (A001622). (End)
a(n) ~ 4^(n-2)/sqrt(n*Pi). - Stefano Spezia, Jan 30 2025