A271870 Convolution of nonzero hexagonal numbers (A000384) with themselves.
1, 12, 66, 236, 651, 1512, 3108, 5832, 10197, 16852, 26598, 40404, 59423, 85008, 118728, 162384, 218025, 287964, 374794, 481404, 610995, 767096, 953580, 1174680, 1435005, 1739556, 2093742, 2503396, 2974791, 3514656, 4130192, 4829088, 5619537, 6510252, 7510482, 8630028
Offset: 0
Links
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Hexagonal Number
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
Magma
[(n+1)*(n+2)*(n+3)*(4*n^2+6*n+5)/30 : n in [0..40]]; // Wesley Ivan Hurt, Apr 20 2016
-
Maple
A271870:=n->(n+1)*(n+2)*(n+3)*(4*n^2+6*n+5)/30: seq(A271870(n), n=0..50); # Wesley Ivan Hurt, Apr 20 2016
-
Mathematica
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 12, 66, 236, 651, 1512}, 36] Table[(n + 1) (n + 2) (n + 3) ((4 n^2 + 6 n + 5)/30), {n, 0, 35}]
-
PARI
a(n)=binomial(n+3,3)*(4*n^2 + 6*n + 5)/5 \\ Charles R Greathouse IV, Jul 26 2016
Formula
O.g.f.: (1 + 3*x)^2/(1 - x)^6.
E.g.f.: (30 + 330*x + 645*x^2 + 365*x^3 + 70*x^4 + 4*x^5)*exp(x)/30.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(4*n^2 + 6*n + 5)/30.
Extensions
a(35)=8630028 corrected by Georg Fischer, Apr 03 2019