A005995 Alkane (or paraffin) numbers l(8,n).
1, 3, 12, 28, 66, 126, 236, 396, 651, 1001, 1512, 2184, 3108, 4284, 5832, 7752, 10197, 13167, 16852, 21252, 26598, 32890, 40404, 49140, 59423, 71253, 85008, 100688, 118728, 139128, 162384, 188496, 218025, 250971, 287964, 329004, 374794, 425334, 481404, 543004
Offset: 0
A271662 Convolution of nonzero pentagonal numbers (A000326) with themselves.
1, 10, 49, 164, 434, 980, 1974, 3648, 6303, 10318, 16159, 24388, 35672, 50792, 70652, 96288, 128877, 169746, 220381, 282436, 357742, 448316, 556370, 684320, 834795, 1010646, 1214955, 1451044, 1722484, 2033104, 2387000, 2788544, 3242393, 3753498, 4327113, 4968804, 5684458
Offset: 0
Comments
More generally, the ordinary generating function for the convolution of nonzero k-gonal numbers with themselves is (1 + (k - 3)*x)^2/(1 - x)^6.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- OEIS Wiki, Figurate numbers
- Eric Weisstein's World of Mathematics, Pentagonal Number
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1)
Crossrefs
Programs
-
Magma
/* From definition: */ P:=func
; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,5)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 13 2016 -
Magma
[(n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 13 2016
-
Mathematica
LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 10, 49, 164, 434, 980}, 40] Table[(n + 1) (n + 2) (n + 3) (9 n^2 + 21 n + 20)/120, {n, 0, 40}] With[{nmax = 50}, CoefficientList[Series[(120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
-
PARI
vector(40, n, n--; (n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120) \\ Altug Alkan, Apr 12 2016
Formula
O.g.f.: (1 + 2*x)^2/(1 - x)^6.
E.g.f.: (120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(9*n^2 + 21*n + 20)/120.
Sum_{n>=0} 1/a(n) = 1.13108002...
Extensions
Edited by Bruno Berselli, Apr 13 2016
A213840 a(n) = n*(1 + n)*(3 - 4*n + 4*n^2)/6.
1, 11, 54, 170, 415, 861, 1596, 2724, 4365, 6655, 9746, 13806, 19019, 25585, 33720, 43656, 55641, 69939, 86830, 106610, 129591, 156101, 186484, 221100, 260325, 304551, 354186, 409654, 471395, 539865, 615536, 698896, 790449, 890715, 1000230, 1119546, 1249231
Offset: 1
Comments
Antidiagonal sums of the convolution array A213838.
The sequence is the binomial transform of (1, 10, 33, 40, 16, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015
From Mircea Dan Rus, Jul 11 2020: (Start)
a(n) is also the number of rectangles in a square biscuit of order n, which is obtained by stacking 2n-1 rows with their centers vertically aligned which consist successively of 1, 3, ..., 2n-3, 2n-1, 2n-3, ..., 3, 1 consecutive unit lattice squares. The order 2 and 3 square biscuits are shown below which contain 11 and 54 rectangles respectively.
(End)
Links
- Clark Kimberling, Table of n, a(n) for n = 1..200
- Teofil Bogdan and Mircea Rus, Numărând dreptunghiuri pe foaia de matematică (in Romanian). Gazeta Matematică, seria B, 2020 (6-7-8), pp. 281-288.
- Teofil Bogdan and Mircea Dan Rus, Counting the lattice rectangles inside Aztec diamonds and square biscuits, arXiv:2007.13472 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
First differences of A271870. - J. M. Bergot, Aug 29 2016
Programs
-
Magma
[n*(1+n)*(3-4*n+4*n^2)/6: n in [1..60]]; // Vincenzo Librandi, Aug 01 2015
-
Maple
A213840:=n->n*(1 + n)*(3 - 4*n + 4*n^2)/6: seq(A213840(n), n=1..50); # Wesley Ivan Hurt, Sep 16 2017
-
Mathematica
Table[n (1 + n) (3 - 4 n + 4 n^2)/6, {n, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 54, 170, 415}, 40] (* Vincenzo Librandi, Aug 01 2015 *)
Formula
Extensions
Edited (with simpler definition) by N. J. A. Sloane, Sep 19 2017
Comments
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
Formula