cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A005995 Alkane (or paraffin) numbers l(8,n).

Original entry on oeis.org

1, 3, 12, 28, 66, 126, 236, 396, 651, 1001, 1512, 2184, 3108, 4284, 5832, 7752, 10197, 13167, 16852, 21252, 26598, 32890, 40404, 49140, 59423, 71253, 85008, 100688, 118728, 139128, 162384, 188496, 218025, 250971, 287964, 329004, 374794, 425334, 481404, 543004
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

From M. F. Hasler, May 01 2009: (Start)
Also, number of 5-element subsets of {1,...,n+5} whose elements sum to an odd integer, i.e. column 5 of A159916.
A linear recurrent sequence with constant coefficients and characteristic polynomial x^9 - 3*x^8 + 8*x^6 - 6*x^5 - 6*x^4 + 8*x^3 - 3*x + 1. (End)
Equals (1/2)*((1, 6, 21, 56, 126, 252, ...) + (1, 0, 3, 0, 6, 0, 10, ...)), see A000389 and A000217.
Equals row sums of triangle A160770.
F(1,5,n) is the number of bracelets with 1 blue, 5 identical red and n identical black beads. If F(1,5,1) = 3 and F(1,5,2) = 12 taken as a base, F(1,5,n) = n(n+1)(n+2)(n+3)/24 + F(1,3,n) + F(1,5,n-2). [F(1,3,n) is the number of bracelets with 1 blue, 3 identical red and n identical black beads. If F(1,3,1) = 2 and F(1,3,2) = 6 taken as a base F(1,3,n) = n(n+1)/2 + [|n/2|] + 1 + F(1,3,n-2)], where [|x|]: if a is an integer and a<=x

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Winston C. Yang (paper in preparation).

Crossrefs

Cf. A160770, A053132 (bisection), A271870 (bisection), A018210 (partial sums).

Programs

  • Maple
    a:= n-> (Matrix([[1, 0$6, -3, -9]]). Matrix(9, (i,j)-> if (i=j-1) then 1 elif j=1 then [3, 0, -8, 6, 6, -8, 0, 3, -1][i] else 0 fi)^n)[1, 1]: seq(a(n), n=0..40); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    a[n_?OddQ] := 1/240*(n+1)*(n+2)*(n+3)*(n+4)*(n+5); a[n_?EvenQ] := 1/240*(n+2)*(n+4)*(n+6)*(n^2+3*n+5); Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Mar 17 2014, after M. F. Hasler *)
    LinearRecurrence[{3, 0, -8, 6, 6, -8, 0, 3, -1},{1, 3, 12, 28, 66, 126, 236, 396, 651},40] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    a(k)= if(k%2,(k+1)*(k+3)*(k+5),(k+6)*(k^2+3*k+5))*(k+2)*(k+4)/240 \\ M. F. Hasler, May 01 2009

Formula

G.f.: (1+3*x^2)/((1-x)^3*(1-x^2)^3).
a(2n-1) = n(n+1)(n+2)(2n+1)(2n+3)/30, a(2n) = (n+1)(n+2)(n+3)(4n^2+6n+5)/ 30. [M. F. Hasler, May 01 2009]
a(n) = (1/240)*(n+1)*(n+2)*(n+3)*(n+4)*(n+5) + (1/16)*(n+2)*(n+4)*(1/2)*(1+(-1)^n). [Yosu Yurramendi, Jun 20 2013]
a(n) = A038163(n)+3*A038163(n-2). - R. J. Mathar, Mar 29 2018

A271662 Convolution of nonzero pentagonal numbers (A000326) with themselves.

Original entry on oeis.org

1, 10, 49, 164, 434, 980, 1974, 3648, 6303, 10318, 16159, 24388, 35672, 50792, 70652, 96288, 128877, 169746, 220381, 282436, 357742, 448316, 556370, 684320, 834795, 1010646, 1214955, 1451044, 1722484, 2033104, 2387000, 2788544, 3242393, 3753498, 4327113, 4968804, 5684458
Offset: 0

Author

Ilya Gutkovskiy, Apr 12 2016

Keywords

Comments

More generally, the ordinary generating function for the convolution of nonzero k-gonal numbers with themselves is (1 + (k - 3)*x)^2/(1 - x)^6.

Crossrefs

Cf. A000326.
Cf. similar sequences of the convolution of k-gonal numbers with themselves: A000389 (k=3, without zeros), A033455 (k=4), this sequence (k=5), A271870 (k=6).

Programs

  • Magma
    /* From definition: */ P:=func; /*, where P(n,k) is the n-th k-gonal number, */ [&+[P(n+1-i,5)*P(i,5): i in [1..n]]: n in [1..40]]; // Bruno Berselli, Apr 13 2016
    
  • Magma
    [(n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120: n in [0..40]]; // Bruno Berselli, Apr 13 2016
  • Mathematica
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {1, 10, 49, 164, 434, 980}, 40]
    Table[(n + 1) (n + 2) (n + 3) (9 n^2 + 21 n + 20)/120, {n, 0, 40}]
    With[{nmax = 50}, CoefficientList[Series[(120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*Exp[x]/120, {x, 0, nmax}], x]*Range[0, nmax]!] (* G. C. Greubel, Jun 07 2017 *)
  • PARI
    vector(40, n, n--; (n+1)*(n+2)*(n+3)*(9*n^2+21*n+20)/120) \\ Altug Alkan, Apr 12 2016
    

Formula

O.g.f.: (1 + 2*x)^2/(1 - x)^6.
E.g.f.: (120 + 1080*x + 1800*x^2 + 920*x^3 + 165*x^4 + 9*x^5)*exp(x)/120.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
a(n) = (n + 1)*(n + 2)*(n + 3)*(9*n^2 + 21*n + 20)/120.
Sum_{n>=0} 1/a(n) = 1.13108002...

Extensions

Edited by Bruno Berselli, Apr 13 2016

A213840 a(n) = n*(1 + n)*(3 - 4*n + 4*n^2)/6.

Original entry on oeis.org

1, 11, 54, 170, 415, 861, 1596, 2724, 4365, 6655, 9746, 13806, 19019, 25585, 33720, 43656, 55641, 69939, 86830, 106610, 129591, 156101, 186484, 221100, 260325, 304551, 354186, 409654, 471395, 539865, 615536, 698896, 790449, 890715, 1000230, 1119546, 1249231
Offset: 1

Author

Clark Kimberling, Jul 05 2012

Keywords

Comments

Antidiagonal sums of the convolution array A213838.
The sequence is the binomial transform of (1, 10, 33, 40, 16, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015
From Mircea Dan Rus, Jul 11 2020: (Start)
a(n) is also the number of rectangles in a square biscuit of order n, which is obtained by stacking 2n-1 rows with their centers vertically aligned which consist successively of 1, 3, ..., 2n-3, 2n-1, 2n-3, ..., 3, 1 consecutive unit lattice squares. The order 2 and 3 square biscuits are shown below which contain 11 and 54 rectangles respectively.
|__|
|__| |__||__|
||__|| ||__||__||
|| ||__||
||
(End)

Crossrefs

First differences of A271870. - J. M. Bergot, Aug 29 2016

Programs

  • Magma
    [n*(1+n)*(3-4*n+4*n^2)/6: n in [1..60]]; // Vincenzo Librandi, Aug 01 2015
  • Maple
    A213840:=n->n*(1 + n)*(3 - 4*n + 4*n^2)/6: seq(A213840(n), n=1..50); # Wesley Ivan Hurt, Sep 16 2017
  • Mathematica
    Table[n (1 + n) (3 - 4 n + 4 n^2)/6, {n, 50}] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {1, 11, 54, 170, 415}, 40] (* Vincenzo Librandi, Aug 01 2015 *)

Formula

a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(1 + 3*x)^2/(1 - x)^5.
From Mircea Dan Rus, Aug 26 2020: (Start)
a(n) = A000332(n+3) + 6*A000332(n+2) + 9*A000332(n+1).
a(n) = A002417(n) + 3*A002417(n-1). (End)

Extensions

Edited (with simpler definition) by N. J. A. Sloane, Sep 19 2017
Showing 1-3 of 3 results.