cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A271323 Numbers n such that n - 41, n - 1, n + 1, n + 41 are consecutive primes.

Original entry on oeis.org

383220, 1269642, 1528938, 2590770, 3014700, 3158298, 3697362, 3946338, 4017312, 4045050, 4545642, 4711740, 4851618, 4871568, 5141178, 5194602, 5925042, 5972958, 5990820, 6075030, 6179862, 6212202, 6350760, 6442938, 6549312, 6910638, 6912132
Offset: 1

Views

Author

Karl V. Keller, Jr., May 15 2016

Keywords

Comments

This sequence is a subsequence of A014574 (average of twin prime pairs) and A256753.
The terms ending in 0 belong to A249674 (divisible by 30).
The terms ending in 2 (resp. 8) are congruent to 12 (resp. 18) mod 30.
The numbers n - 40 and n + 1 belong to A126721 (p such that p + 40 is the next prime) and A271981 (p and p + 40 are primes).
The numbers n - 40 and n - 1 belong to A271982 (p and p + 42 are primes).

Examples

			383220 is the average of the four consecutive primes 383179, 383219, 383221, 383261.
1269642 is the average of the four consecutive primes 1269601, 1269641, 1269643, 1269683.
		

Crossrefs

Cf. A014574, A077800 (twin primes), A249674, A256753.

Programs

  • Mathematica
    Mean/@Select[Partition[Prime[Range[472000]],4,1],Differences[#] == {40,2,40}&] (* Harvey P. Dale, Oct 16 2021 *)
  • Python
    from sympy import isprime,prevprime,nextprime
    for i in range(0,12000001,6):
      if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-41 and nextprime(i+1) == i+41: print (i,end=', ')

A309392 Square array read by downward antidiagonals: A(n, k) is the k-th prime p such that p + 2*n is also prime, or 0 if that prime does not exist.

Original entry on oeis.org

3, 5, 3, 11, 7, 5, 17, 13, 7, 3, 29, 19, 11, 5, 3, 41, 37, 13, 11, 7, 5, 59, 43, 17, 23, 13, 7, 3, 71, 67, 23, 29, 19, 11, 5, 3, 101, 79, 31, 53, 31, 17, 17, 7, 5, 107, 97, 37, 59, 37, 19, 23, 13, 11, 3, 137, 103, 41, 71, 43, 29, 29, 31, 13, 11, 7, 149, 109
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2019

Keywords

Comments

The same as A231608 except that A231608 gives the upward antidiagonals of the array, while this sequence gives the downward antidiagonals.
Conjecture: All values are nonzero, i.e., for any even integer e there are infinitely many primes p such that p + e is also prime.
The conjecture is true if Polignac's conjecture is true.

Examples

			The array starts as follows:
3,  5, 11, 17, 29, 41, 59,  71, 101, 107, 137, 149, 179, 191
3,  7, 13, 19, 37, 43, 67,  79,  97, 103, 109, 127, 163, 193
5,  7, 11, 13, 17, 23, 31,  37,  41,  47,  53,  61,  67,  73
3,  5, 11, 23, 29, 53, 59,  71,  89, 101, 131, 149, 173, 191
3,  7, 13, 19, 31, 37, 43,  61,  73,  79,  97, 103, 127, 139
5,  7, 11, 17, 19, 29, 31,  41,  47,  59,  61,  67,  71,  89
3,  5, 17, 23, 29, 47, 53,  59,  83,  89, 113, 137, 149, 167
3,  7, 13, 31, 37, 43, 67,  73,  97, 151, 157, 163, 181, 211
5, 11, 13, 19, 23, 29, 41,  43,  53,  61,  71,  79,  83,  89
3, 11, 17, 23, 41, 47, 53,  59,  83,  89, 107, 131, 137, 173
7, 19, 31, 37, 61, 67, 79, 109, 127, 151, 157, 211, 229, 241
5,  7, 13, 17, 19, 23, 29,  37,  43,  47,  59,  73,  79,  83
		

Crossrefs

Cf. A231608.
Cf. A001359 (row 1), A023200 (row 2), A023201 (row 3), A023202 (row 4), A023203 (row 5), A046133 (row 6), A153417 (row 7), A049488 (row 8), A153418 (row 9), A153419 (row 10), A242476 (row 11), A033560 (row 12), A252089 (row 13), A252090 (row 14), A049481 (row 15), A049489 (row 16), A252091 (row 17), A156104 (row 18), A271347 (row 19), A271981 (row 20), A271982 (row 21), A272176 (row 22), A062284 (row 25), A049490 (row 32), A020483 (column 1).

Programs

  • PARI
    row(n, terms) = my(i=0); forprime(p=1, , if(i>=terms, break); if(ispseudoprime(p+2*n), print1(p, ", "); i++))
    array(rows, cols) = for(x=1, rows, row(x, cols); print(""))
    array(12, 14) \\ Print initial 12 rows and 14 columns of the array

A365850 Numbers k for which k^2 + (k')^2 is a square, where k' is the arithmetic derivative of k (A003415).

Original entry on oeis.org

0, 1, 12, 15, 35, 81, 143, 323, 400, 441, 899, 1540, 1763, 2700, 3599, 4641, 5183, 5929, 9375, 10395, 10403, 11663, 13585, 18225, 19043, 21952, 22499, 30576, 32399, 35581, 36863, 39203, 48841, 51983, 57599, 72899, 79523, 97343, 121103, 148176, 166375, 175692, 176399
Offset: 1

Views

Author

Marius A. Burtea, Oct 09 2023

Keywords

Comments

If p and p + 2 are twin primes (A001359) then m = p*(p + 2) is a term. Indeed, m' = p + (p + 2) = 2*p + 2 and m^2 + (m')^2 = p^2*(p + 2)^2 + (2*p + 2)^2 = (p^2 + 2*p + 2)^2.
More generally, if p and p + 2*k, k >= 1, are prime numbers, then m = p^k*(p + 2*k)^k is a term. Indeed, m' = k*p^(k - 1)*(p + 2*k)^k+ k*p^k*(p + 2*k)^(k - 1) = k*p^(k - 1)*(p + 2*k)^(k-1)*(2*p + 2*k). Thus, m^2 + (m')^2 = p^(2*k)*(p + 2*k)^(2*k) + (k^2)*p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(2*p + 2*k)^2 = p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(p^2*(p + 2*k)^2 + k^2*(2*p + 2*k)^2) = p^(2*k - 2)*(p + 2*k)^(2*k - 2)*(2*k^2 + 2*k*p + p^2)^2.

Examples

			For k = 12, k' = 16 and 12^2 + 16^2 = 144 + 256 = 400 = 20^2, so 12 is a term.
For k = 15, k' = 8 and 15^2 + 8^2 = 225 + 64 = 289 = 17^2, so 15 is a term.
For k = 143, k' = 24 and 143^2 + 24^2 = 144 + 256 = 21025 = 145^2, so 143 is a term.
		

Crossrefs

Programs

  • Magma
    f:=func; [n:n in [0..200000] |IsSquare( n^2+( Floor(f(n))^2))];
  • Maple
    ader:= proc(n) local f;   n*add(f[2]/f[1], f=ifactors(n)[2]) end proc:
    select(t -> issqr(t^2 + ader(t)^2), [$0..10^6]; # Robert Israel, Oct 17 2023
  • Mathematica
    d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 180000], IntegerQ[Sqrt[#^2 + d[#]^2]] &] (* Amiram Eldar, Oct 11 2023 *)
Showing 1-3 of 3 results.