A272036 Numbers n such that the sum of the inverse of the exponents in the binary expansion of 2n is equal to 1.
1, 38, 2090, 16902, 18954, 18988, 131334, 133386, 133420, 148258, 150284, 524314, 524348, 526386, 541212, 543250, 543284, 655644, 657682, 657716, 672568, 674580, 8388742, 8390794, 8390828, 8405666, 8407692, 8520098, 8522124, 8536962, 8536996, 8539048, 8913052, 8915090
Offset: 1
Keywords
Examples
For n=38, 2*38_10 = 2^6 + 2^3 + 2^2 = 1001100_2, and 1/2 + 1/3 + 1/6 = 1.
Links
- Robert Israel, Table of n, a(n) for n = 1..1655 (first 200 terms from Peter Kagey)
Programs
-
Mathematica
Select[Range[2^20], Total[1/Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]] == 1 &] (* Michael De Vlieger, Apr 18 2016 *)
-
PARI
is(n) = my(b = Vecrev(binary(n))); sum(k=1, #b, b[k]/k) == 1;
Comments