cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A272083 Irregular triangle read by rows: strictly decreasing positive integer sequences in lexicographic order with the property that the sum of inverses equals one.

Original entry on oeis.org

1, 6, 3, 2, 12, 6, 4, 2, 15, 10, 3, 2, 15, 12, 10, 4, 2, 15, 12, 10, 6, 4, 3, 18, 9, 3, 2, 18, 12, 9, 4, 2, 18, 12, 9, 6, 4, 3, 18, 15, 10, 9, 6, 2, 18, 15, 12, 10, 9, 4, 3, 20, 5, 4, 2, 20, 6, 5, 4, 3, 20, 12, 6, 5, 2, 20, 15, 10, 5, 4, 3, 20, 15, 12, 10, 5
Offset: 1

Views

Author

Peter Kagey, Apr 19 2016

Keywords

Examples

			First six rows:
[1]                   because 1/1 = 1.
[6, 3, 2]             because 1/6 + 1/3 + 1/2 = 1.
[12, 6, 4, 2]         because 1/12 + 1/6 + 1/4 + 1/2 = 1.
[15, 10, 3, 2]        because 1/15 + 1/10 + 1/3 + 1/2 = 1.
[15, 12, 10, 4, 2]    because 1/15 + 1/12 + 1/10 + 1/4 + 1/2 = 1.
[15, 12, 10, 6, 4, 3] because 1/15 + 1/12 + 1/10 + 1/6 + 1/4 + 1/3 = 1.
		

Crossrefs

A272034 Numbers n such that the sum of the inverse of the exponents in the binary expansion of 2n is the inverse of an integer.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 36, 38, 64, 128, 256, 512, 1024, 2048, 2056, 2080, 2088, 2090, 4096, 8192, 16384, 16896, 16900, 16902, 16928, 18944, 18952, 18954, 18988, 32768, 65536, 131072, 131328, 131332, 131334, 131360, 133376, 133384, 133386, 133420, 148224, 148256, 148258, 150284
Offset: 1

Views

Author

Michel Marcus, Apr 18 2016

Keywords

Comments

That is, numbers such that A116416(n) is equal to 1.
The powers of 2 (A000079) form a subsequence.

Examples

			For n=36, 38_10=100100_2, and 1/3 + 1/6 = 1/2, the inverse of an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^18], IntegerQ[1/Total[1/# & /@ Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]]] &] (* Michael De Vlieger, Apr 18 2016 *)
  • PARI
    isok(n) = {my(b = Vecrev(binary(n))); numerator(sum(k=1, #b, b[k]/k)) == 1;}

A272035 Numbers n such that the sum of the inverse of the exponents in the binary expansion of 2n is an integer.

Original entry on oeis.org

0, 1, 38, 39, 2090, 2091, 16902, 16903, 18954, 18955, 18988, 18989, 131334, 131335, 133386, 133387, 133420, 133421, 148258, 148259, 150284, 150285, 524314, 524315, 524348, 524349, 526386, 526387, 541212, 541213, 543250, 543251, 543284, 543285, 655644, 655645, 657682
Offset: 1

Views

Author

Michel Marcus, Apr 18 2016

Keywords

Comments

That is, numbers such that A116416(n) equals 1.
2k is in this sequence if and only if 2k + 1 is. Therefore n + a(n) is odd for all n. - Peter Kagey, Apr 19 2016

Examples

			For n=39, 39_10=100111_2, and 1/1 + 1/2 + 1/3 + 1/6 = 2, an integer.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^20], IntegerQ@ Total[1/Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]] &] (* Michael De Vlieger, Apr 18 2016 *)
  • PARI
    isok(n) = {my(b = Vecrev(binary(n))); denominator(sum(k=1, #b, b[k]/k)) == 1;}

A275288 Least k such that there exists a sequence b_1 < b_2 < ... < b_t = k that includes n and has a reciprocal sum of 1.

Original entry on oeis.org

1, 6, 6, 12, 20, 6, 28, 24, 18, 15, 33, 12, 65, 28, 15, 48, 85, 18, 76, 20, 28, 33, 115, 24, 100, 52, 54, 28, 145, 30, 217, 96, 33, 85, 35, 36, 296, 95, 52, 40, 246, 42, 301, 55, 45, 138, 329, 48, 196, 75, 102, 52, 371, 54, 55, 56, 76, 174, 531, 60, 305, 155
Offset: 1

Views

Author

Peter Kagey, Aug 18 2016

Keywords

Comments

From Robert Price, Jan 04 2017: (Start)
a(11) = 33 [2,3,11,22,33]
65 >= a(13) > 26 [2,3,13,26,52,60,65]; no better solution with fewer than 15 terms.
48 >= a(16) > 32 [2,3,16,18,36,48]; no better solution with fewer than 24 terms.
85 >= a(17) > 34 [2,3,15,17,34,85]; no better solution with fewer than 12 terms.
76 >= a(19) > 19 [2,3,12,19,57,76]; no better solution with fewer than 12 terms.
a(20) = 20 [2,4,5,20]
a(21) = 28 [2,4,8,21,24,28]
a(22) = 33 [2,4,11,20,22,30,33]
115 >= a(23) > 23 [2,3,10,23,69,115]; no better solution with fewer than 11 terms.
a(24) = 24 [2,3,8,24]
100 >= a(25) > 25 [2,3,10,25,60,100]; no better solution with fewer than 11 terms.
52 >= a(26) > 26 [2,3,12,26,39,52]; no better solution with fewer than 16 terms.
54 >= a(27) > 27 [2,3,12,27,36,54]; no better solution with fewer than 9 terms.
a(28) = 28 [2,3,12,21,28]
145 >= a(29) > 29 [2,4,5,29,116,145]; no better solution with fewer than 9 terms.
a(30) = 30 [2,3,12,20,30]
217 >= a(31) > 31 [2,3,9,31,93,126,217]; no better solution with fewer than 9 terms.
96 >= a(32) > 32 [2,3,9,32,72,96]; no better solution with fewer than 11 terms.
a(33) = 33 [2,3,11,22,33]
85 >= a(34) > 34 [2,3,17,20,34,60,85]; no better solution with fewer than 9 terms.
a(35) = 35 [2,3,14,15,35]
a(36) = 36 [2,3,12,18,36]
296 >= a(37) > 37 [2,3,8,37,148,222,296]; no better solution with fewer than 8 terms.
95 >= a(38) > 38 [2,4,5,38,76,95]; no better solution with fewer than 11 terms.
52 >= a(39) > 39 [2,4,6,26,39,52]; no better solution with fewer than 15 terms.
a(40) = 40 [2,3,10,24,40]
246 >= a(41) > 41 [2,3,8,41,120,205,246]; no better solution with fewer than 9 terms.
a(42) = 42 [2,3,7,42]
192 >= a(64) [2,3,8,48,64,192]; no better solution with fewer than 9 terms.
162 >= a(81) [2,3,8,72,81,108,162]; no better solution with fewer than 9 terms.
384 >= a(128) [2,3,7,96,128,336,384]; no better solution with fewer than 8 terms.
486 >= a(243) [2,3,7,81,243,336,432,486]; no better solution with fewer than 9 terms.
a(216) = 216 [2,3,8,27,216]
196 >= a(49) [2,3,8,49,98,168,196]; no better solution with fewer than 8 terms.
a(100) = 100 [2,4,5,25,100]
363 >= a(121) [2,3,7,121,176,242,336,363]; no better solution with fewer than 8 terms.
a(144) = 144 [2,3,7,112,126,144]
a(196) = 196 [2 ,3,7,84,147,196]
a(225) = 225 [2,3,9,25,90,225]
a(500) = 500 [2,4,5,25,125,500]
It appears that in most cases a(n) is a small multiple of n. For example: a(8)=3*8, a(11)=3*11, a(35)=1*35.
If not a small multiple of n, then a small rational times n. For example: a(10)=3/2*10, a(21)=4/3*21, a(22)=3/2*22.
Conjectures:
a(2^n) = 3*n
a(3^n) = 2*n
a(5^n) = 4*n
a(6^n) = n
a(7^n) = 4*n
(End)
From Peter Kagey, Jul 20 2017: (Start)
a(n) = n if and only if n is in A092671.
Every term in this sequence is in A092671.
a(a(n)) = a(n); that is, this sequence is idempotent.
(End)
From Jon E. Schoenfield, Feb 15 2020: (Start)
For any n > 1, let P be the largest divisor of n that is either a prime (p) or prime power (p^e, where e > 1). Then a(n) >= m*P where m is the smallest integer such that p divides the numerator of the sum of some subset of the set of unit fractions {1/1, 1/2, 1/3, ..., 1/m} that includes 1/(n/P).
Conjecture (confirmed for all n <= 40000): for all n > 1, the lower bound given above is tight, i.e., a(n) = m*P where m and P are as defined above. (See Example section.) (End)

Examples

			a(1)  =  1 via [1]
a(2)  =  6 via [2, 3, 6]
a(3)  =  6 via [2, 3, 6]
a(4)  = 12 via [2, 4, 6, 12]
a(5)  = 20 via [2, 4, 5, 20]
a(6)  =  6 via [2, 3, 6]
a(7)  = 28 via [2, 4, 7, 14, 28]
a(8)  = 24 via [2, 3, 8, 24]
a(9)  = 18 via [2, 3, 9, 18]
a(10) = 15 via [2, 3, 10, 15]
a(11) > 30
a(12) = 12 via [2, 4, 6, 12]
a(13) > 30
a(14) = 28 via [2, 4, 7, 14, 28]
a(15) = 15 via [2, 3, 10, 15]
a(16) > 30
a(17) > 30
a(18) = 18 via [2, 3, 9, 18]
From _Jon E. Schoenfield_, Feb 15 2020: (Start)
For n=31, the largest prime or prime power divisor of n is P=31, and the set of unit fractions {1/1, 1/2, 1/3, 1/4, 1/5, 1/6} has no subset sum that includes 1/(n/P) = 1/1 and has a numerator divisible by 31, but the set of unit fractions {1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7} does have such a subset sum, namely, 1/1 + 1/3 + 1/7 = 31/21, so a(31) >= 7*31 = 217. In fact, the numbers 1*31=31, 3*31=93, and 7*31=217 are elements of many sets of integers that include n=31, include no element > 217, and have a reciprocal sum of 1 (one such set is {2,3,12,28,31,93,217}), so a(31)=217.
For n=62, the largest prime or prime power divisor of n is again P=31, and the set of unit fractions {1/1, 1/2, 1/3, 1/4} has no subset sum that includes 1/(n/P) = 1/2 and has a numerator divisible by 31, but the set of unit fractions {1/1, 1/2, 1/3, 1/4, 1/5} does have such a subset sum, namely, 1/2 + 1/3 + 1/5 = 31/30, so a(62) >= 5*31 = 155. In fact, the numbers 2*31=62, 3*31=93, and 5*31=155 are elements of many sets of integers that include n=62, include no element > 155, and have a reciprocal sum of 1 (one such set is {2,3,12,20,62,93,155}), so a(62)=155.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[SelectFirst[Range@ 20, MemberQ[Map[Total, 1/DeleteCases[Rest@ Subsets[Range@ #, #], w_ /; FreeQ[w, n]]], 1] &] /. k_ /; MissingQ@ k -> 0, {n, 12}] (* Michael De Vlieger, Aug 18 2016, Version 10.2, values of a(n) > 20 appear as 0 *)

Extensions

a(11)-a(12) from Robert Price, Jan 07 2017
a(13)-a(58) from David A. Corneth, Jul 20 2017
a(59)-a(62) from Jon E. Schoenfield, Feb 15 2020

A291256 Numbers n such that Sum_{k>=1} digits(k)/k = 1 where digits() are the digits of n in base 10, the least significant digit having index 1.

Original entry on oeis.org

1, 20, 300, 2010, 4000, 50000, 100110, 102100, 200200, 300010, 302000, 400100, 600000, 7000000, 20001010, 20003000, 20101100, 20301000, 40000010, 40002000, 40100100, 40300000, 60001000, 80000000, 300000200, 300100010, 300102000, 300200100, 300400000, 320101000, 340100000
Offset: 1

Views

Author

Michel Marcus, Aug 21 2017

Keywords

Examples

			20 is a term since 0/1 + 2/2 = 1.
2010 is a term since 0/1 + 1/2 + 0/3 + 2/4 = 1.
		

Crossrefs

Cf. A272036 (analog in base 2).

Programs

  • Mathematica
    ndig[n_] := Sort[Sum[e[[2]] 10^(1/e[[1]] - 1), {e, #}] & /@ Select[Tally /@ (Join[ {1/n}, #] & /@ IntegerPartitions[1 - 1/n, All, 1/Range[n]]), Max[Flatten[#]] < 10 &]]; Join @@ (ndig /@ Range[20]) (* Giovanni Resta, Aug 21 2017 *)
  • PARI
    isok(n) = my(d = Vecrev(digits(n))); sum(k=1, #d, d[k]/k) == 1;
Showing 1-5 of 5 results.