cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272036 Numbers n such that the sum of the inverse of the exponents in the binary expansion of 2n is equal to 1.

Original entry on oeis.org

1, 38, 2090, 16902, 18954, 18988, 131334, 133386, 133420, 148258, 150284, 524314, 524348, 526386, 541212, 543250, 543284, 655644, 657682, 657716, 672568, 674580, 8388742, 8390794, 8390828, 8405666, 8407692, 8520098, 8522124, 8536962, 8536996, 8539048, 8913052, 8915090
Offset: 1

Views

Author

Michel Marcus, Apr 18 2016

Keywords

Comments

That is, numbers such that both A116416(n) and A116417(n) are equal to 1.
Intersection of A272034 and A272035.
A number m with an exponent k in the binary sum must have another power of 2 having an exponent at least A275288(k). - David A. Corneth, Apr 01 2017

Examples

			For n=38, 2*38_10 = 2^6 + 2^3 + 2^2 = 1001100_2, and 1/2 + 1/3 + 1/6 = 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2^20], Total[1/Flatten@ Position[Reverse@ IntegerDigits[#, 2], 1]] == 1 &] (* Michael De Vlieger, Apr 18 2016 *)
  • PARI
    is(n) = my(b = Vecrev(binary(n))); sum(k=1, #b, b[k]/k) == 1;

A359506 a(n) is the least integer m such that there exists a strictly increasing integer sequence n = b_1 < b_2 < ... < b_t = m with the property that b_1 XOR b_2 XOR ... XOR b_t = 0.

Original entry on oeis.org

0, 3, 5, 6, 7, 10, 9, 12, 11, 14, 13, 20, 15, 18, 17, 24, 19, 22, 21, 28, 23, 26, 25, 40, 27, 30, 29, 36, 31, 34, 33, 48, 35, 38, 37, 44, 39, 42, 41, 56, 43, 46, 45, 52, 47, 50, 49, 80, 51, 54, 53, 60, 55, 58, 57, 72, 59, 62, 61, 68, 63, 66, 65, 96, 67
Offset: 0

Views

Author

Peter Kagey, Jan 03 2023

Keywords

Comments

XOR is the bitwise XOR function, A003987.
This sequence is a bijection from the nonnegative integers to A057716, the nonpowers of 2.
Let's call the sequences mentioned in the definition as "zero-XOR sequences", and their last terms as "enders". a(n) is then the least possible ender for any zero-XOR sequence starting with n. - Antti Karttunen, Nov 25 2024

Examples

			For n = 19, a(19) = 28 with the sequence 19 XOR 20 XOR 27 XOR 28 = 0.
A table illustrating the first eleven terms:
   n |a(n)| sequence
  ---+----+-------------------
   0 |  0 |  0
   1 |  3 |  1 XOR  2 XOR  3
   2 |  5 |  2 XOR  3 XOR  4 XOR  5
   3 |  6 |  3 XOR  5 XOR  6
   4 |  7 |  4 XOR  5 XOR  6 XOR  7
   5 | 10 |  5 XOR  6 XOR  9 XOR 10
   6 |  9 |  6 XOR  7 XOR  8 XOR  9
   7 | 12 |  7 XOR 11 XOR 12
   8 | 11 |  8 XOR  9 XOR 10 XOR 11
   9 | 14 |  9 XOR 10 XOR 13 XOR 14
  10 | 13 | 10 XOR 11 XOR 12 XOR 13
		

Crossrefs

Cf. A003987, A057716, A359507, A359508, A378212 (a left inverse).
Cf. A006255, A275288, A277278, A277494, A300516, A329732 (variants of the theme).

Programs

  • Maple
    f:= proc(n) local k,S;
        S:= {n};
        for k from n+1 do
          S:= S union map(Bits:-Xor,S,k);
          if member(0,S) then return k fi;
        od;
    end proc:
    f(0):= 0:
    map(f, [$0..100]); # Robert Israel, Jan 12 2023
  • Mathematica
    f[n_] := Module[{k, S}, S = {n}; For[k = n+1, True, k++, S = S  ~Union~ BitXor[S, k]; If[MemberQ[S, 0], Return[k]]]];
    f[0] = 0;
    f /@ Range[0, 100] (* Jean-François Alcover, Jan 22 2023, after Robert Israel *)
  • PARI
    a(n)= if (n==0, return (0), my (x=[n],y); for (m=n+1, oo, if (vecmin(y=[bitxor(v,m) | v<-x])==0, return (m), x=setunion(x,Set(y)))))  \\ Rémy Sigrist, Jan 12 2023

Formula

For n > 1, a(n) >= n + 3. a(4n) = 4n + 3 for n > 0. Conjecture: a(n) <= 5(n+1)/3. - Charles R Greathouse IV, Jan 12 2023
For all n >= 0, A378212(a(n)) = n. - Antti Karttunen, Nov 25 2024
Showing 1-2 of 2 results.