A272094
a(n) = Product_{k=0..n} binomial(k^2,k).
Original entry on oeis.org
1, 1, 6, 504, 917280, 48735086400, 94925811409228800, 8154182636726616909619200, 36091760791026276649159689107865600, 9415901310649088228943246038670339934863360000, 162992165498634702043940163611264755298214594247272038400000
Offset: 0
-
Table[Product[Binomial[k^2, k], {k, 0, n}], {n, 0, 10}]
A272095
a(n) = Product_{k=0..n} binomial(n^2,k).
Original entry on oeis.org
1, 1, 24, 27216, 1956864000, 11593630125000000, 7004354761049263478784000, 515246658615545697034849051407876096, 5368556637668593177532650186945239827409750982656, 9038577429104951379916309583338181472480254559457860096000000000
Offset: 0
-
Table[Product[Binomial[n^2, k], {k, 0, n}], {n, 0, 10}]
Table[((n^2)!)^(n+1) * BarnesG[n^2 - n + 1] / (BarnesG[n^2 + 2] * BarnesG[n+2]), {n, 0, 10}]
A362288
a(n) = Product_{k=0..n} binomial(n,k)^k.
Original entry on oeis.org
1, 1, 2, 27, 9216, 312500000, 4251528000000000, 95432797246104853383515625, 14719075154533285649961930052505436160000, 65577306173662530591576256095315195684570038194755952705536
Offset: 0
-
Table[Product[Binomial[n, k]^k, {k, 0, n}], {n, 0, 10}]
Table[(n!)^(n*(n+1)/2) / BarnesG[n+2]^n, {n, 0, 10}]
-
a(n) = prod(k=0, n, binomial(n,k)^k); \\ Michel Marcus, Apr 14 2023
A345466
a(n) = Product_{k=1..n} binomial(n, floor(n/k)).
Original entry on oeis.org
1, 1, 2, 9, 96, 1250, 64800, 1764735, 224788480, 22499086176, 6123600000000, 408514437465750, 1308805762115174400, 133962125607455951520, 99335199198879310098432, 113040832521732593994140625, 425230288403106927476736000000, 72623663171934137824096600064000
Offset: 0
-
[n eq 0 select 1 else (&*[Binomial(n,Floor(n/j)): j in [1..n]]): n in [0..30]]; // G. C. Greubel, Feb 05 2024
-
Table[Product[Binomial[n, Floor[n/k]], {k, 1, n}], {n, 0, 20}]
Table[Product[((n + 1)/k - 1)^Floor[n/k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 24 2021 *)
-
[product(binomial(n,(n//j)) for j in range(1,n+1)) for n in range(31)] # G. C. Greubel, Feb 05 2024
A272096
a(n) = Product_{k=0..n} (k*n)!.
Original entry on oeis.org
1, 1, 48, 1567641600, 9698137182219213471744000000, 21488900044302744250061179567064173417691432878080000000000000000
Offset: 0
-
Table[Product[(k*n)!, {k, 0, n}], {n, 0, 6}]
Showing 1-5 of 5 results.
Comments