A272134 a(n) = n*(15*n^2 - 15*n + 4).
0, 4, 68, 282, 736, 1520, 2724, 4438, 6752, 9756, 13540, 18194, 23808, 30472, 38276, 47310, 57664, 69428, 82692, 97546, 114080, 132384, 152548, 174662, 198816, 225100, 253604, 284418, 317632, 353336, 391620, 432574, 476288, 522852, 572356, 624890, 680544
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Richard P. Brent, Generalising Tuenter's binomial sums, arXiv:1407.3533 [math.CO], 2014. (page 16)
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Programs
-
Magma
[n*(15*n^2-15*n+4): n in [0..40]];
-
Mathematica
Table[n (15 n^2 - 15 n + 4), {n, 0, 40}]
-
PARI
vector(100, n, n--; n*(15*n^2 - 15*n + 4)) \\ Altug Alkan, Apr 28 2016
-
Python
for n in range(0,10**3):print(n*(15*n**2-15*n+4),end=", ") # Soumil Mandal, Apr 30 2016