cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272134 a(n) = n*(15*n^2 - 15*n + 4).

Original entry on oeis.org

0, 4, 68, 282, 736, 1520, 2724, 4438, 6752, 9756, 13540, 18194, 23808, 30472, 38276, 47310, 57664, 69428, 82692, 97546, 114080, 132384, 152548, 174662, 198816, 225100, 253604, 284418, 317632, 353336, 391620, 432574, 476288, 522852, 572356, 624890, 680544
Offset: 0

Views

Author

Vincenzo Librandi, Apr 27 2016

Keywords

Crossrefs

Programs

  • Magma
    [n*(15*n^2-15*n+4): n in [0..40]];
    
  • Mathematica
    Table[n (15 n^2 - 15 n + 4), {n, 0, 40}]
  • PARI
    vector(100, n, n--; n*(15*n^2 - 15*n + 4)) \\ Altug Alkan, Apr 28 2016
    
  • Python
    for n in range(0,10**3):print(n*(15*n**2-15*n+4),end=", ") # Soumil Mandal, Apr 30 2016

Formula

O.g.f.: 2*x*(2 + 26*x + 17*x^2)/(1-x)^4.
E.g.f.: x*(4 + 30*x + 15*x^2)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), for n>3.
See page 7 in Brent's paper:
a(n) = 2*n^2*A049450(n) - n*(2*n-1)*A049450(n-1).
A272357(n) = 2*n^2*a(n) - n*(2*n-1)*a(n-1).