cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272144 Convolution of A000217 and A001045.

Original entry on oeis.org

0, 0, 1, 4, 12, 30, 69, 150, 316, 652, 1329, 2688, 5412, 10866, 21781, 43618, 87300, 174672, 349425, 698940, 1397980, 2796070, 5592261, 11184654, 22369452, 44739060, 89478289, 178956760, 357913716, 715827642, 1431655509, 2863311258, 5726622772
Offset: 0

Views

Author

Patrick Okolo Edeogu, Apr 21 2016

Keywords

Examples

			a(4) = 12 = 0*10+1*6+1*3+3*1+5*0 from A000217: 0,1,3,6,10,... and A001045: 0,1,1,3,5,11,...
		

Crossrefs

Partial Sums of A011377(n-2)=A178420(n-1).

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); [0,0] cat Coefficients(R!(x^2/((1-x)^3*(1+x)*(1-2*x)))); // G. C. Greubel, Oct 26 2018
  • Maple
    seq(coeff(series(x^2/((1-x)^3*(1+x)*(1-2*x)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 26 2018
  • Mathematica
    CoefficientList[Series[x^2/((1 - x)^3 (1 + x) (1 - 2 x)), {x, 0, 30}], x] (* Michael De Vlieger, Apr 21 2016 *)
  • PARI
    concat([0, 0], Vec(x^2/((1-x)^3*(1+x)*(1-2*x)) + O(x^40))) \\ Altug Alkan, Apr 21 2016
    

Formula

a(n) = Sum{k=0..n} A000217(k) * A001045(n-k). - Joerg Arndt, May 17 2016
a(n) = 4*a(n-1) - 4*a(n-2) - 2*a(n-3) + 5*a(n-4) - 2*a(n-5).
G.f.: x^2/((1-x)^3*(1+x)*(1-2*x)).
a(n+2) = (-105+(-1)^n+2^(7+n)-48*n-6*n^2)/24. - Colin Barker, Apr 21 2016
E.g.f.: (exp(-x) + 32*exp(2*x) - 3*(11 + 10*x + 2*x^2)*exp(x))/24. - Ilya Gutkovskiy, Apr 21 2016