cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A339278 Irregular triangle read by rows T(n,k), (n >= 1, k >= 1), in which the partition number A000041(n-1) is the length of row n and every column k is A000203, the sum of divisors function.

Original entry on oeis.org

1, 3, 4, 1, 7, 3, 1, 6, 4, 3, 1, 1, 12, 7, 4, 3, 3, 1, 1, 8, 6, 7, 4, 4, 3, 3, 1, 1, 1, 1, 15, 12, 6, 7, 7, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 13, 8, 12, 6, 6, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 18, 15, 8, 12, 12, 6, 6, 7, 7, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2020

Keywords

Comments

The sum of row n equals A138879(n), the sum of all parts in the last section of the set of partitions of n.
T(n,k) is also the number of cubic cells (or cubes) added at the n-th stage in the k-th level starting from the base in the tower described in A221529, assuming that the tower is an object under construction (see the example). - Omar E. Pol, Jan 20 2022

Examples

			Triangle begins:
   1;
   3;
   4,  1;
   7,  3,  1;
   6,  4,  3, 1, 1;
  12,  7,  4, 3, 3, 1, 1;
   8,  6,  7, 4, 4, 3, 3, 1, 1, 1, 1;
  15, 12,  6, 7, 7, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1;
  13,  8, 12, 6, 6, 7, 7, 4, 4, 4, 4, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1;
...
From _Omar E. Pol_, Jan 13 2022: (Start)
Illustration of the first six rows of triangle showing the growth of the symmetric tower described in A221529:
    Level k: 1              2         3        4       5      6     7
Stage
  n   _ _ _ _ _ _ _ _
     |            _  |
  1  |           |_| |
     |_ _ _ _ _ _ _ _|
     |          _    |
     |         | |_  |
  2  |         |_ _| |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _
     |        _      |        _  |
     |       | |     |       |_| |
  3  |       |_|_ _  |           |
     |         |_ _| |           |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _
     |      _        |      _    |      _  |
     |     | |       |     | |_  |     |_| |
  4  |     | |_      |     |_ _| |         |
     |     |_  |_ _  |           |         |
     |       |_ _ _| |           |         |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _ _ _ _ _
     |    _          |    _      |    _    |    _  |    _  |
     |   | |         |   | |     |   | |_  |   |_| |   |_| |
     |   | |         |   |_|_ _  |   |_ _| |       |       |
  5  |   |_|_        |     |_ _| |         |       |       |
     |       |_ _ _  |           |         |       |       |
     |       |_ _ _| |           |         |       |       |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _|_ _ _ _|_ _ _ _ _ _
     |  _            |  _        |  _      |  _    |  _    |  _  |  _  |
     | | |           | | |       | | |     | | |_  | | |_  | |_| | |_| |
     | | |           | | |_      | |_|_ _  | |_ _| | |_ _| |     |     |
     | | |_ _        | |_  |_ _  |   |_ _| |       |       |     |     |
  6  | |_    |       |   |_ _ _| |         |       |       |     |     |
     |   |_  |_ _ _  |           |         |       |       |     |     |
     |     |_ _ _ _| |           |         |       |       |     |     |
     |_ _ _ _ _ _ _ _|_ _ _ _ _ _|_ _ _ _ _|_ _ _ _|_ _ _ _|_ _ _|_ _ _|
.
Every cell in the diagram of the symmetric representation of sigma represents a cubic cell or cube.
For n = 6 and k = 3 we add four cubes at 6th stage in the third level of the structure of the tower starting from the base so T(6,3) = 4.
For n = 9 another connection with the tower is as follows:
First we take the columns from the above triangle and build a new triangle in which all columns start at row 1 as shown below:
.
   1,  1,  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
   3,  3,  3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3;
   4,  4,  4, 4, 4, 4, 4, 4, 4, 4, 4;
   7,  7,  7, 7, 7, 7, 7;
   6,  6,  6, 6, 6;
  12, 12, 12;
   8,  8;
  15;
  13;
.
Then we rotate the triangle by 90 degrees as shown below:
                                       _
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  | |
  1;                                  |_|_
  1, 3;                               |   |
  1, 3;                               |   |
  1, 3;                               |   |
  1, 3;                               |_ _|_
  1, 3, 4;                            |   | |
  1, 3, 4;                            |   | |
  1, 3, 4;                            |   | |
  1, 3, 4;                            |_ _|_|_
  1, 3, 4, 7;                         |     | |
  1, 3, 4, 7;                         |_ _ _| |_
  1, 3, 4, 7, 6;                      |     |   |
  1, 3, 4, 7, 6;                      |_ _ _|_ _|_
  1, 3, 4, 7, 6, 12;                  |_ _ _ _| | |_
  1, 3, 4, 7, 6, 12, 8;               |_ _ _ _|_|_ _|_ _
  1, 3, 4, 7, 6, 12, 8, 15; 13;       |_ _ _ _ _|_ _|_ _|
.
                                         Lateral view
                                         of the tower
.                                      _ _ _ _ _ _ _ _ _
                                      |_| | | | | | |   |
                                      |_ _|_| | | | |   |
                                      |_ _|  _|_| | |   |
                                      |_ _ _|    _|_|   |
                                      |_ _ _|  _|    _ _|
                                      |_ _ _ _|     |
                                      |_ _ _ _|  _ _|
                                      |         |
                                      |_ _ _ _ _|
.
                                           Top view
                                         of the tower
.
The sum of the m-th row of the new triangle equals A024916(j) where j is the length of the m-th row, equaling the number of cubic cells in the m-th level of the tower. For example: the last row of triangle has 9 terms and the sum of the last row is 1 + 3 + 4 + 7 + 6 + 12 + 8 + 15 + 13 = A024916(9) = 69, equaling the number of cubes in the base of the tower. (End)
		

Crossrefs

Sum of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000203.
The length of the m-th block in row n is A187219(m), m >= 1.
Row sums give A138879.
Cf. A337209 (another version).
Cf. A272172 (analog for the stepped pyramid described in A245092).

Programs

  • Mathematica
    A339278[rowmax_]:=Table[Flatten[Table[ConstantArray[DivisorSigma[1,n-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]],{n,rowmax}];
    A339278[15] (* Generates 15 rows *) (* Paolo Xausa, Feb 17 2023 *)
  • PARI
    f(n) = numbpart(n-1);
    T(n, k) = {if (k > f(n), error("invalid k")); if (k==1, return (sigma(n))); my(s=0); while (k <= f(n-1), s++; n--;); sigma(1+s);}
    tabf(nn) = {for (n=1, nn, for (k=1, f(n), print1(T(n,k), ", ");); print;);} \\ Michel Marcus, Jan 13 2021
    
  • PARI
    A339278(rowmax)=vector(rowmax,n,concat(vector(n,m,vector(numbpart(m-1)-numbpart(m-2),i,sigma(n-m+1)))));
    A339278(15) \\ Generates 15 rows \\ Paolo Xausa, Feb 17 2023

Formula

a(m) = A000203(A336811(m)).
T(n,k) = A000203(A336811(n,k)).

A340584 Irregular triangle read by rows T(n,k) in which row n lists sigma(n) + sigma(n-1) together with the first n - 2 terms of A000203 in reverse order, with T(1,1) = 1, n >= 1.

Original entry on oeis.org

1, 4, 7, 1, 11, 3, 1, 13, 4, 3, 1, 18, 7, 4, 3, 1, 20, 6, 7, 4, 3, 1, 23, 12, 6, 7, 4, 3, 1, 28, 8, 12, 6, 7, 4, 3, 1, 31, 15, 8, 12, 6, 7, 4, 3, 1, 30, 13, 15, 8, 12, 6, 7, 4, 3, 1, 40, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 42, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1, 38, 28, 12, 18, 13, 15, 8, 12, 6, 7, 4, 3, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2021

Keywords

Comments

T(n,k) is the total area (or number of cells) of the terraces that are in the k-th level that contains terraces starting from the base of the symmetric tower (a polycube) described in A221529 which has A000041(n-1) levels in total. The terraces of the polycube are the symmetric representation of sigma. The terraces are in the levels that are the partition numbers A000041 starting from the base. Note that for n >= 2 there are n - 1 terraces because the first terrace of the tower is formed by two symmetric representations of sigma in the same level. The volume (or the number of cubes) equals A066186(n), the sum of all parts of all partitions of n. The volume is also the sum of all divisors of all terms of the first n rows of A336811. That is due to the correspondence between divisors and partitions (cf. A336811). The growth of the volume (A066186) represents the convolution of A000203 and A000041.

Examples

			Triangle begins:
   1;
   4;
   7,  1;
  11,  3,  1;
  13,  4,  3,  1;
  18,  7,  4,  3,  1;
  20,  6,  7,  4,  3,  1;
  23, 12,  6,  7,  4,  3,  1;
  28,  8, 12,  6,  7,  4,  3,  1;
  31, 15,  8, 12,  6,  7,  4,  3,  1;
  30, 13, 15,  8, 12,  6,  7,  4,  3,  1;
  40, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
  42, 12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
  38, 28, 12, 18, 13, 15,  8, 12,  6,  7,  4,  3,  1;
...
For n = 7, sigma(7) = 1 + 7 = 8 and sigma(6) = 1 + 2 + 3 + 6 = 12, and 8 + 12 = 20, so the first term of row 7 is T(7,1) = 20. The other terms in row 7 are the first five terms of A000203 in reverse order, that is [6, 7, 4, 3, 1] so the 7th row of the triangle is [20, 6, 7, 4, 3, 1].
From _Omar E. Pol_, Jul 11 2021: (Start)
For n = 7 we can see below the top view and the lateral view of the pyramid described in A245092 (with seven levels) and the top view and the lateral view of the tower described in A221529 (with 11 levels).
                                           _
                                          | |
                                          | |
                                          | |
        _                                 |_|_
       |_|_                               |   |
       |_ _|_                             |_ _|_
       |_ _|_|_                           |   | |
       |_ _ _| |_                         |_ _|_|_
       |_ _ _|_ _|_                       |_ _ _| |_
       |_ _ _ _| | |_                     |_ _ _|_ _|_ _
       |_ _ _ _|_|_ _|                    |_ _ _ _|_|_ _|
.
         Figure 1.                           Figure 2.
        Lateral view                       Lateral view
       of the pyramid.                     of the tower.
.
.       _ _ _ _ _ _ _                      _ _ _ _ _ _ _
       |_| | | | | | |                    |_| | | | |   |
       |_ _|_| | | | |                    |_ _|_| | |   |
       |_ _|  _|_| | |                    |_ _|  _|_|   |
       |_ _ _|    _|_|                    |_ _ _|    _ _|
       |_ _ _|  _|                        |_ _ _|  _|
       |_ _ _ _|                          |       |
       |_ _ _ _|                          |_ _ _ _|
.
          Figure 3.                          Figure 4.
          Top view                           Top view
       of the pyramid.                     of the tower.
.
Both polycubes have the same base which has an area equal to A024916(7) = 41 equaling the sum of the 7th row of triangle.
Note that in the top view of the tower the symmetric representation of sigma(6) and the symmetric representation of sigma(7) appear unified in the level 1 of the structure as shown above in the figure 4 (that is due to the first two partition numbers A000041 are [1, 1]), so T(7,1) = sigma(7) + sigma(6) = 8 + 12 = 20. (End)
		

Crossrefs

The length of row n is A028310(n-1).
Row sums give A024916.
Column 1 gives 1 together with A092403.
Other columns give A000203.
Cf. A175254 (volume of the pyramid).
Cf. A066186 (volume of the tower).
Cf. A346533 (mirror).

Programs

  • Mathematica
    Table[If[n <= 2, {Total@ #}, Prepend[#2, Total@ #1] & @@ TakeDrop[#, 2]] &@ DivisorSigma[1, Range[n, 1, -1]], {n, 14}] // Flatten (* Michael De Vlieger, Jan 13 2021 *)

A272171 Triangle read by rows: T(n,k) in which row n lists the first n terms of A000005 in reverse order.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 3, 2, 2, 1, 2, 3, 2, 2, 1, 4, 2, 3, 2, 2, 1, 2, 4, 2, 3, 2, 2, 1, 4, 2, 4, 2, 3, 2, 2, 1, 3, 4, 2, 4, 2, 3, 2, 2, 1, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 2, 6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1, 4, 2, 6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 21 2016

Keywords

Examples

			Triangle begins:
1;
2, 1;
2, 2, 1;
3, 2, 2, 1;
2, 3, 2, 2, 1;
4, 2, 3, 2, 2, 1;
2, 4, 2, 3, 2, 2, 1;
4, 2, 4, 2, 3, 2, 2, 1;
3, 4, 2, 4, 2, 3, 2, 2, 1;
4, 3, 4, 2, 4, 2, 3, 2, 2, 1;
2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1;
6, 2, 4, 3, 4, 2, 4, 2, 3, 2, 2, 1;
...
		

Crossrefs

Column k gives A000005 starting in row k.
Row sums give A006218, n >= 1.

Formula

a(n) = A000005(A004736(n)).
T(n,k) = A000005(n-k+1).

A350637 Triangle read by rows: T(n,k) in which row n lists the first n terms of A024916 in reverse order, 1 <= k <= n.

Original entry on oeis.org

1, 4, 1, 8, 4, 1, 15, 8, 4, 1, 21, 15, 8, 4, 1, 33, 21, 15, 8, 4, 1, 41, 33, 21, 15, 8, 4, 1, 56, 41, 33, 21, 15, 8, 4, 1, 69, 56, 41, 33, 21, 15, 8, 4, 1, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1, 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1, 127, 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 09 2022

Keywords

Comments

T(n,k) is the number of cubic cells (or cubes) in the k-th level starting from the base of the stepped pyramid with n levels described in A245092 (see example).

Examples

			Triangle begins:
    1;
    4,  1;
    8,  4,  1;
   15,  8,  4,  1;
   21, 15,  8,  4,  1;
   33, 21, 15,  8,  4,  1;
   41, 33, 21, 15,  8,  4,  1;
   56, 41, 33, 21, 15,  8,  4,  1;
   69, 56, 41, 33, 21, 15,  8,  4,  1;
   87, 69, 56, 41, 33, 21, 15,  8,  4,  1;
   99, 87, 69, 56, 41, 33, 21, 15,  8,  4,  1;
  127, 99, 87, 69, 56, 41, 33, 21, 15,  8,  4,  1;
...
For n = 9 the lateral view and top view of the stepped pyramid described in A245092 look as shown below:
                        _
     9        1        |_|_
     8        4        |_ _|_
     7        8        |_ _|_|_
     6       15        |_ _ _| |_
     5       21        |_ _ _|_ _|_
     4       33        |_ _ _ _| | |_
     3       41        |_ _ _ _|_|_ _|_
     2       56        |_ _ _ _ _|_|_  |_
     1       69        |_ _ _ _ _|_ _|_ _|
.
   Level   Row 9         Lateral view of
     k     T(9,k)      the stepped pyramid
.
                        _ _ _ _ _ _ _ _ _
                       |_| | | | | | | | |
                       |_ _|_| | | | | | |
                       |_ _|  _|_| | | | |
                       |_ _ _|    _|_| | |
                       |_ _ _|  _|  _ _|_|
                       |_ _ _ _|  _| |
                       |_ _ _ _| |_ _|
                       |_ _ _ _ _|
                       |_ _ _ _ _|
.
                           Top view of
                       the stepped pyramid
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the stepped pyramid, so T(9,1) = 69.
For n = 9 and k = 9 there is only one cubic cell in the level k = 9 (the top) of the stepped pyramid, so T(9,9) = 1.
The volume of the stepped pyramid (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000027 hence it's equal to A175254(9) = 248, equaling the sum of the 9th row of triangle.
		

Crossrefs

Column k gives A024916 starting in row k.
Row sums give A175254.
Cf. A340423 (analog for the tower described in A221529).

Programs

  • Mathematica
    Join@@Array[Reverse@Array[Sum[#-Mod[#,m],{m,#}]&,#]&,12] (* Giorgos Kalogeropoulos, Jan 12 2022 *)
  • PARI
    row(n) = Vecrev(vector(n, k, sum(i=1, k, k\i*i))); \\ Michel Marcus, Jan 22 2022

Formula

T(n,k) = A024916(A004736(n,k)).
T(n,k) = T(n,k) = A024916(n-k+1).
T(n,k) = Sum_{j=1..n} A272172(j,k).
Showing 1-4 of 4 results.