A272239 Least positive integer b such that b > n and (n, b, n+b) is an abc-hit.
8, 243, 125, 121, 27, 214369, 243, 1323, 2048, 2187, 2176, 5021863, 243, 658489, 85169, 6859, 5103, 148046875, 6125, 19663, 327680, 23882747, 2025, 1830101, 704, 3536379, 512, 50625, 19683, 75926359382369, 19652, 49, 2000000, 793071875, 4096, 313046839, 32768
Offset: 1
Keywords
Examples
a(8) = 1323 because rad(8*1323*1331) = 2*21*11 = 462 < 1331, hence (8, 1323, 1331) is an abc-hit and (8, b, b+3) isn't an abc-hit for every b where 8 < b < 1323.
Links
- Wikipedia, abc conjecture
Crossrefs
Programs
-
Maple
rad:=n -> mul(i,i in factorset(n)): min_c_for_a:=proc(n) local a,b,c,ra,rc; for a to n do ra:=rad(a): for c from 2*a+1 do if igcd(a,c)=1 then rc:=rad(c): if ra*rc
-
PARI
rad(x, y, z) = my(f=factor(x*y*z)[, 1]~); prod(i=1, #f, f[i]) is_abc_hit(x, y, z) = gcd(x, y)==1 && gcd(x, z)==1 && gcd(y, z)==1 && rad(x, y, z) < z a(n) = my(b=n+1); while(!is_abc_hit(n, b, n+b), b++); b \\ Felix Fröhlich, May 08 2016
Extensions
More terms from Jinyuan Wang, Jun 08 2022
Comments