cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272352 a(n) is the number of ways of putting n labeled balls into 2 indistinguishable boxes such that each box contains at least 3 balls.

Original entry on oeis.org

10, 35, 91, 210, 456, 957, 1969, 4004, 8086, 16263, 32631, 65382, 130900, 261953, 524077, 1048344, 2096898, 4194027, 8388307, 16776890, 33554080, 67108485, 134217321, 268435020, 536870446, 1073741327, 2147483119, 4294966734, 8589933996, 17179868553
Offset: 6

Views

Author

Vincenzo Librandi, May 11 2016

Keywords

Examples

			For n=6, label the balls A, B, C, D, E, and F. Then each box must contain exactly 3 balls, and the 10 ways are ABC/DEF, ABD/CEF, ABE/CDF, ABF/CDE, ACD/BEF, ACE/BDF, ACF/BDE, ADE/BCF, ADF/BCE, AEF/BCD. - _Michael B. Porter_, Jul 01 2016
		

Crossrefs

Cf. A000478, A058844, A261724, A272982, column 2 of A059022.
Column k=3 of A201385 (shifted).

Programs

  • Magma
    [(2^n-2-2*n-2*Binomial(n,2))/2: n in [6..50]];
  • Mathematica
    Table[1/2 (2^n - 2 - 2 n - 2 Binomial[n, 2]), {n, 6, 40}]
    LinearRecurrence[{5,-9,7,-2},{10,35,91,210},30] (* Harvey P. Dale, Mar 29 2018 *)

Formula

G.f.: x^6*(10 - 15*x + 6*x^2)/((1 - x)^3*(1 - 2*x)).
a(n) = (2^n - 2 - 2*n - 2*binomial(n, 2))/2.
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4), for n > 3.
E.g.f.: (2 - 2*exp(x) + 2*x + x^2)^2/8. - Stefano Spezia, Jul 25 2021