cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272362 Expansion of (1 + x - x^2 - x^3 - x^4)/((1 - x)*(1 - x - 2*x^2 - 2*x^3 - x^4)).

Original entry on oeis.org

1, 3, 6, 14, 32, 74, 171, 396, 917, 2124, 4920, 11397, 26401, 61158, 141673, 328187, 760249, 1761126, 4079670, 9450606, 21892446, 50714123, 117479896, 272143639, 630424122, 1460385314, 3383000731, 7836763241, 18153959452, 42053872709, 97418318825, 225670746387, 522769088906, 1211001092038
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 27 2016

Keywords

Comments

Partial sums of A272642. - Wolfdieter Lang, May 06 2016

Crossrefs

Programs

  • Magma
    I:=[1,3,6,14,32]; [n le 5 select I[n] else 2*Self(n-1)+Self(n-2)-Self(n-4)-Self(n-5): n in [1..30]]; // Vincenzo Librandi, May 08 2016
  • Mathematica
    LinearRecurrence[{2, 1, 0, -1, -1}, {1, 3, 6, 14, 32}, 34]
    RecurrenceTable[{a[n] == Floor[GoldenRatio a[n - 1] + GoldenRatio a[n - 2]], a[0] == 1, a[1] == 3}, a, {n, 33}]
    CoefficientList[Series[(1 + x - x^2 - x^3 - x^4)/((1 - x) (1 - x - 2 x^2 - 2 x^3 - x^4)), {x, 0, 50}], x] (* Vincenzo Librandi, May 08 2016 *)
  • PARI
    Vec((1+x-x^2-x^3-x^4)/(1-2*x-x^2+x^4+x^5) + O(x^99)) \\ Altug Alkan, Apr 27 2016
    

Formula

G.f.: (1 + x - x^2 - x^3 - x^4)/((1 - x)*(1 - x - 2*x^2 - 2*x^3 - x^4)).
a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5).
a(n) = floor(phi*a(n-1) + phi*a(n-2)), a(0)=1, a(1)=3, where phi is the golden ratio (A001622).
Limit_{n->infinity} a(n)/a(n-1) = 2/(sqrt(2*sqrt(5)-1) - 1) = sqrt(phi + phi*sqrt(phi + phi*sqrt(phi + ...))) = A189970.
Limit_{n->infinity} a(n-1)/a(n) = (sqrt(2*sqrt(5)-1) - 1)/2 = 1 + A190157.