cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A272642 Expansion of (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).

Original entry on oeis.org

1, 2, 3, 8, 18, 42, 97, 225, 521, 1207, 2796, 6477, 15004, 34757, 80515, 186514, 432062, 1000877, 2318544, 5370936, 12441840, 28821677, 66765773, 154663743, 358280483, 829961192, 1922615417, 4453762510, 10317196211, 23899913257, 55364446116, 128252427562, 297098342519, 688232003132
Offset: 0

Views

Author

N. J. A. Sloane, May 07 2016

Keywords

References

Crossrefs

A272362 gives partial sums.

Programs

  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1))); // Bruno Berselli, May 08 2016
  • Mathematica
    CoefficientList[Series[(x^4 + x^3 + x^2 - x - 1)/(x^4 + 2 x^3 + 2 x^2 + x - 1), {x, 0, 40}], x] (* Vincenzo Librandi, May 08 2016 *)
    LinearRecurrence[{1,2,2,1},{1,2,3,8,18},40] (* Harvey P. Dale, Oct 31 2024 *)

Formula

G.f.: (x^4+x^3+x^2-x-1)/(x^4+2*x^3+2*x^2+x-1).
a(n) = 2*a(n-1) + a(n-2) - a(n-4) - a(n-5). - Vincenzo Librandi, May 08 2016

A274203 Expansion of x*(1 - x - x^3)/((1 - x)*(1 - 2*x - 3*x^2 - 2*x^3 - x^4)).

Original entry on oeis.org

0, 1, 2, 7, 21, 67, 212, 673, 2136, 6781, 21527, 68341, 216960, 688777, 2186642, 6941875, 22038189, 69964063, 222113084, 705136609, 2238578784, 7106757625, 22561637903, 71625842857, 227388693456, 721884948913, 2291749301810, 7275556680127, 23097519856965, 73327093306843, 232789608846644
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 13 2016

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 1, -1, -1, -1}, {0, 1, 2, 7, 21}, 31]
    RecurrenceTable[{a[0] == 0, a[1] == 1, a[n] == Floor[(Sqrt[2] + 1) a[n - 1] + (Sqrt[2] + 1) a[n - 2]]}, a, {n, 30}]
  • PARI
    concat(0, Vec(x*(1-x-x^3)/((1-x)*(1-2*x-3*x^2-2*x^3-x^4)) + O(x^99))) \\ Altug Alkan, Jun 26 2016

Formula

G.f.: x*(1 - x - x^3)/((1 - x)*(1 - 2*x - 3*x^2 - 2*x^3 - x^4)).
a(n) = 3*a(n-1) + a(n-2) - a(n-3) - a(n-4) - a(n-5).
a(n) = floor((1 + sqrt(2))*a(n-1) + (1 + sqrt(2))*a(n-2)), a(0)=0, a(1)=1 (empirically).
Lim_{n->infinity} a(n)/a(n+1) = sqrt(sqrt(2) - sqrt(sqrt(2) + sqrt(sqrt(2) - sqrt(sqrt(2) + ...)))) = (sqrt(4*sqrt(2) - 3) - 1)/2 = A190179 - 1.
Showing 1-2 of 2 results.