A272406 Primes p == 1 (mod 3) for which A261029(34*p) = 2.
7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 367, 373, 397, 409, 421, 439, 457, 487, 571, 709, 787, 877
Offset: 1
Links
- Vladimir Shevelev, Representation of positive integers by the form x^3+y^3+z^3-3xyz, arXiv:1508.05748 [math.NT], 2015.
Programs
-
Mathematica
r[n_] := Reduce[0 <= x <= y <= z && z >= x+1 && n == x^3 + y^3 + z^3 - 3 x y z, {x, y, z}, Integers]; a29[n_] := Which[rn = r[n]; rn === False, 0, rn[[0]] === And, 1, rn[[0]] === Or, Length[rn], True, Print["error ", rn]]; Select[Select[Range[7, 997, 3], PrimeQ], a29[34 #] == 2&] (* Jean-François Alcover, Dec 01 2018 *)
Extensions
All terms (after first author's ones) were calculated by Peter J. C. Moses, Apr 29 2016
Comments