cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A272574 a(n) = f(9, f(8, n)), where f(k,m) = floor(m*k/(k-1)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 30, 31, 32, 33, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 63, 64, 65, 66, 67, 68, 69, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 90
Offset: 0

Views

Author

Bruno Berselli, May 03 2016

Keywords

Comments

Also, numbers that are congruent to {0..6} mod 9.
The initial terms coincide with those of A037475 and A039111. First disagreement is after 60 (index 48): a(49) = 63, A037475(49) = 81 and A039111(50) = 71.

Crossrefs

Cf. A248375: f(9,n).
Cf. similar sequences with the formula f(k, f(k-1, n)): A008585 (k=3), A042948 (k=4), A047217 (k=5), A047246 (k=6), A047337 (k=7), A047602 (k=8), this sequence (k=9), A272576 (k=10).

Programs

  • Magma
    k:=9; f:=func; [f(k,f(k-1,n)): n in [0..70]];
    
  • Maple
    f := (k, m) -> floor(m*k/(k-1)):
    a := n -> f(9, f(8, n)):
    seq(a(n), n = 0..70); # Peter Luschny, May 03 2016
  • Mathematica
    f[k_, m_] := Floor[m*k/(k-1)];
    a[n_] := f[9, f[8, n]];
    Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 09 2016 *)
    CoefficientList[Series[x (1 + x + x^2 + x^3 + x^4 + x^5 + 3 x^6)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 70}], x] (* or *)
    Table[(63 n - 12 - 12 Mod[n, 7] + 2 Mod[-n - 1, 7])/49, {n, 0, 70}] (* Michael De Vlieger, Dec 25 2016 *)
    LinearRecurrence[{1,0,0,0,0,0,1,-1},{0,1,2,3,4,5,6,9},90] (* Harvey P. Dale, May 08 2018 *)
  • Sage
    f = lambda k, m: floor(m*k/(k-1))
    a = lambda n: f(9, f(8, n))
    [a(n) for n in range(71)] # Peter Luschny, May 03 2016

Formula

G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + 3*x^6)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8).
a(n) = (63*n - 12 - 12*(n mod 7) + 2*((-n-1) mod 7))/49. - Wesley Ivan Hurt, Dec 25 2016