cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A140445 List of prime pairs of form p, p + 10.

Original entry on oeis.org

3, 13, 7, 17, 13, 23, 19, 29, 31, 41, 37, 47, 43, 53, 61, 71, 73, 83, 79, 89, 97, 107, 103, 113, 127, 137, 139, 149, 157, 167, 163, 173, 181, 191, 223, 233, 229, 239, 241, 251, 271, 281, 283, 293, 307, 317, 337, 347, 349, 359, 373, 383, 379, 389, 409, 419, 421
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 26 2008

Keywords

Crossrefs

Cf. A023203 (1st bisection), A092146 (2nd bisection).
Cf. prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), this sequence (k=10), A156323 (k=12), A140446 (k=14), A272815 (k=16), A156328 (k=18), A272816 (k=20), A140447 (k=22).

Programs

  • Maple
    i: 1: for k from 1 to 1200 do if isprim (k) and isprim (k+10) then a [ i ] : = k : a [ i + 1]: = k + 10 : i = i + 2 fi od : seq (a [ n ], n=1..i-1);
  • Mathematica
    Flatten[{#,#+10}&/@Select[Prime[Range[100]],PrimeQ[#+10]&]]  (* Harvey P. Dale, Apr 11 2011 *)

Extensions

Corrected by D. S. McNeil, Dec 10 2009

A272815 Prime pairs of the form (p, p+16).

Original entry on oeis.org

3, 19, 7, 23, 13, 29, 31, 47, 37, 53, 43, 59, 67, 83, 73, 89, 97, 113, 151, 167, 157, 173, 163, 179, 181, 197, 211, 227, 223, 239, 241, 257, 277, 293, 331, 347, 337, 353, 367, 383, 373, 389, 433, 449, 463, 479, 487, 503, 541, 557, 547, 563, 571
Offset: 1

Views

Author

Vincenzo Librandi, May 07 2016

Keywords

Comments

p and p+16 are not necessarily consecutive primes: (1831, 1847) is the first pair of consecutive primes that belongs to the sequence.

Examples

			The prime pairs are (3, 19), (7, 23), (13, 29) etc.
		

Crossrefs

Cf. prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), A140445 (k=10), A156323 (k=12), A140446 (k=14), this sequence (k=16), A156328 (k=18), A272816 (k=20), A140447 (k=22).

Programs

  • Magma
    &cat [[p,p+16]: p in PrimesUpTo(1000) | IsPrime(p+16)];
  • Mathematica
    Flatten[{#, # + 16}&/@Select[Prime[Range[200]], PrimeQ[# + 16] &]]

Formula

a(2n+1) = A049488(n+1).
Showing 1-2 of 2 results.