A272860 Sums of two primes (in increasing order) when equal to the product of their prime-counting functions.
12, 18, 24, 96, 116, 120, 984, 990, 996, 8408, 23616, 23742, 23850, 24030, 24066, 24084, 480324, 480336, 481344, 3523814, 3523842, 3523884, 3524514, 9557160, 9558030, 9558240, 9558300, 25874592, 25874640, 70119798, 189960894, 189961344, 189962352, 189963594, 189963630, 189969102
Offset: 1
Keywords
Examples
12 is a term because 12 = 5 + 7 = pi(5) * pi(7).
Links
- Giuseppe Coppoletta, Table of n, a(n) for n = 1..43
- Eric Weisstein's World of Mathematics, Rosser's Theorem
- Pierre Dusart, Estimates of some functions over primes without R.H., arXiv:1002.0442 [math.NT], 2010.
Programs
-
Mathematica
Select[Range[10^3], Function[n, MemberQ[Times @@ # & /@ PrimePi@ Select[Transpose@ {#, n - #} &@ Range[Floor[n/2]], Times @@ Boole@ PrimeQ@ {First@ #, Last@ #} == 1 &], n]]] (* Michael De Vlieger, Jun 29 2016 *)
-
Sage
def sol(n): return [k for k in divisors(n) if k^2<= n and is_prime(n-nth_prime(k)) and k*prime_pi(n-nth_prime(k))==n] N=25000 v=[n for n in range(2,N,2) if len(sol(n))>0] print('A272862 =',v) list_pi=flatten([sol(n) for n in range(2,N,2) if sol(n)]) print('list_pi(p) =',list_pi)
Formula
Extensions
More terms from David A. Corneth, Jun 28 2016
Comments