cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273365 Numbers k such that 10*k+4 is a perfect square.

Original entry on oeis.org

0, 6, 14, 32, 48, 78, 102, 144, 176, 230, 270, 336, 384, 462, 518, 608, 672, 774, 846, 960, 1040, 1166, 1254, 1392, 1488, 1638, 1742, 1904, 2016, 2190, 2310, 2496, 2624, 2822, 2958, 3168, 3312, 3534, 3686, 3920, 4080, 4326, 4494
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A033583 (perfect squares ending in 0 in base 10 with final 0 removed).

Programs

  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 6, 14, 32, 48}, 50] (* G. C. Greubel, May 21 2016 *)
    Select[Range[0,5000],IntegerQ[Sqrt[10#+4]]&] (* Harvey P. Dale, Apr 19 2019 *)
  • PARI
    is(n)=issquare(10*n+4) \\ Charles R Greathouse IV, Jan 31 2017

Formula

a(2n) = 10*n^2 + 4*n, n>=0.
a(2n-1) = 10*n^2 - 4*n, n>=1.
G.f.: 2*x*(3*x^2+4x+3)/((1-x)^3*(1+x)^2).
From G. C. Greubel, May 21 2016: (Start)
E.g.f.: (1/2)*((5*x^2 + 11*x)*cosh(x) + (5*x^2 + 9*x + 1)*sinh(x)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)