A281450
a(n) = Fibonacci(binomial(2*n,n)).
Original entry on oeis.org
1, 1, 8, 6765, 190392490709135, 20672849399056463095319772838289364792345825123228624
Offset: 0
-
a:= n-> (<<0|1>, <1|1>>^binomial(2*n, n))[1, 2]:
seq(a(n), n=0..6);
A273398
a(n) = Catalan(Fibonacci(n)).
Original entry on oeis.org
1, 1, 1, 2, 5, 42, 1430, 742900, 24466267020, 812944042149730764, 1759414616608818870992479875972, 254224158304000796523953440778841647086547372026600, 161115593562260183597018076262500259385225118963936327496691227156776984827584194180
Offset: 0
For n=4, a(4)=Catalan(Fibonacci(4))=Catalan(3)=5.
-
a:= n-> (f-> binomial(2*f, f)/(f+1))((<<0|1>, <1|1>>^n)[1, 2]):
seq(a(n), n=0..12); # Alois P. Heinz, Jan 20 2017
-
CatalanNumber[Fibonacci[Range[0,12]]]
Table[CatalanNumber[Fibonacci[n]], {n, 0,12}]
-
for(n=0,12, fn=fibonacci(n); print1(binomial(2*fn, fn)/(fn+1) ","))
Showing 1-2 of 2 results.
Comments