A273625 a(n) = (1/12)*(Fibonacci(2*n) + Fibonacci(4*n) + Fibonacci(6*n)).
1, 14, 228, 3948, 69905, 1248072, 22352707, 400808856, 7190208684, 129009258070, 2314882621811, 41538234954384, 745368939599413, 13375072472343218, 240005728531700340, 4306726622089196592, 77281063743045412517, 1386752354089549205976, 24884260852952644076119
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..795
- P. Bala, Lucas sequences and divisibility sequences
- P. Bala, Divisibility sequences from strong divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (28,-204,434,-204,28,-1).
Programs
-
Magma
[1/12*(Fibonacci(2*n)+Fibonacci(4*n)+Fibonacci(6*n)): n in [1..25]]; // Vincenzo Librandi, Jun 02 2016
-
Maple
#A273625 with(combinat): seq(1/12*(fibonacci(2*n) + fibonacci(4*n) + fibonacci(6*n)), n = 1..20);
-
Mathematica
LinearRecurrence[{28, -204, 434, -204, 28, -1},{1, 14, 228, 3948, 69905, 1248072}, 100] (* G. C. Greubel, Jun 02 2016 *) Table[1/12 (Fibonacci[2 n] + Fibonacci[4 n] + Fibonacci[6 n]), {n, 1, 30}] (* Vincenzo Librandi, Jun 02 2016 *)
-
PARI
A001906(n)=fibonacci(2*n) a(n)=(A001906(n)+A001906(2*n)+A001906(3*n))/12 \\ Charles R Greathouse IV, Jun 08 2016
Formula
a(n) = -a(-n).
O.g.f.: x*(x^4 - 14*x^3 + 40*x^2 - 14*x + 1)/((x^2 - 3*x + 1)*(x^2 - 7*x + 1)*(x^2 - 18*x + 1)).
a(n) = 28*a(n-1) - 204*a(n-2) + 434*a(n-3) - 204*a(n-4) + 28*a(n-5) - a(n-6). - G. C. Greubel, Jun 02 2016
Comments