A273627 A divisibility sequence: (1/8)*(Pell(4*n) - 2*Pell(2*n)).
1, 48, 1715, 58752, 1998709, 67914000, 2307174311, 78376578048, 2662499775145, 90446634986352, 3072523201721819, 104375342876112000, 3545689138389464221, 120449055384533383248, 4091722194064948458575, 138998105543576763850752, 4721843866291934117429329
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..600
- P. Bala, Lucas sequences and divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (40,-206,40,-1).
Programs
-
Magma
I:=[1,48,1715,58752]; [n le 4 select I[n] else 40*Self(n-1)-206*Self(n-2)+40*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Jun 02 2016
-
Maple
#A273627 A000129 := proc (n) option remember; if n <= 1 then n else 2*A000129(n-1)+A000129(n-2) end if end proc: seq(1/8*(A000129(4*n)-2*A000129(2*n)), n = 1..20);
-
Mathematica
CoefficientList[Series[(x^2 + 8*x + 1)/((x^2 - 6*x + 1)*(x^2 - 34*x + 1)), {x, 0, 20}], x] (* Wesley Ivan Hurt, Jun 01 2016 *) LinearRecurrence[{40, -206, 40, -1}, {1, 48, 1715, 58752}, 20] (* Vincenzo Librandi, Jun 02 2016 *)
Formula
a(n) = -a(-n).
a(n) = 40*a(n-1) - 206*a(n-2) + 40*a(n-3) - a(n-4) for n>4.
O.g.f.: x*(x^2 + 8*x + 1)/((x^2 - 6*x + 1)*(x^2 - 34*x + 1)).
a(n) = ((17+12*sqrt(2))^(1-n)*(-1+2*(3+2*sqrt(2))^n+(17+12*sqrt(2))^(2*n)-2*(99+70*sqrt(2))^n))/(384+272*sqrt(2)). - Colin Barker, Jun 02 2016
Comments