A273630 a(n) = Sum_{k = 0..n} (-1)^k*k^3*binomial(n,k)^3.
0, -1, 0, 162, 0, -11250, 0, 576240, 0, -25259850, 0, 1007242236, 0, -37685439792, 0, 1346871240000, 0, -46504059326010, 0, 1562983866658500, 0, -51407781284599740, 0, 1661123953798807680, 0, -52886433789393750000, 0, 1662782404368229351200
Offset: 0
Links
- Peter Bala, A generalization of Dixon's identity
- J. Ward, 100 Years of Dixon's Identity, Irish Mathematical Society Bulletin 27, 46-54, 1991
- Wikipedia, Dixon's identity
Programs
-
Magma
[&+[(-1)^k*k^3 *Binomial(n, k)^3: k in [0..n]]: n in [0..70]]; // Vincenzo Librandi, Jul 23 2016
-
Maple
seq(add((-1)^k*k^3*binomial(n,k)^3, k = 0..n), n = 0..30);
-
Mathematica
Table[Sum[(-1)^k*k^3 Binomial[n, k]^3, {k, 0, n}], {n, 0, 27}] (* Michael De Vlieger, Jul 22 2016 *)
-
PARI
a(n) = sum(k=0, n, (-1)^k*k^3*binomial(n, k)^3) \\ Felix Fröhlich, Jul 22 2016
-
Python
from math import factorial def A273630(n): return (1 if (m:=n>>1)&1 else -1)*n**3*factorial(3*m)//factorial(m)**3 if n&1 else 0 # Chai Wah Wu, Oct 04 2022
Comments