cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A143396 Triangle T(n,k) = number of forests of labeled rooted trees of height at most 1, with n labels, k of which are used for root nodes and any root may contain >= 1 labels, n >= 0, 0<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 2, 0, 3, 9, 5, 0, 4, 30, 40, 15, 0, 5, 90, 220, 185, 52, 0, 6, 255, 1040, 1485, 906, 203, 0, 7, 693, 4550, 9905, 9891, 4718, 877, 0, 8, 1820, 19040, 59850, 87416, 66808, 26104, 4140, 0, 9, 4644, 77448, 341082, 686826, 750120, 463212, 153063, 21147
Offset: 0

Views

Author

Alois P. Heinz, Aug 12 2008

Keywords

Examples

			T(3,2) = 9: {1,2}<-3, {1,3}<-2, {2,3}<-1, {1}<-3{2}, {1}{2}<-3, {1}<-2{3}, {1}{3}<-2, {2}<-1{3}, {2}{3}<-1.
Triangle begins:
  1;
  0,  1;
  0,  2,  2;
  0,  3,  9,   5;
  0,  4, 30,  40,  15;
  0,  5, 90, 220, 185,  52;
  ...
		

Crossrefs

Diagonal gives A000110.
Row sums give A143405.
T(2n,n) gives A273661.

Programs

  • Maple
    T:= (n, k)-> binomial(n, k)*add(Stirling2(k, t)*t^(n-k), t=0..k):
    seq(seq(T(n, k), k=0..n), n=0..11);
  • Mathematica
    T[n_, k_] := T[n, k] = Binomial[n, k]*Sum[StirlingS2[k, t]*If[n == k, 1, t^(n - k)], {t, 0, k}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 27 2016, translated from Maple, updated Jan 01 2021 *)

Formula

T(n,k) = C(n,k) * Sum_{t=0..k} Stirling2(k,t) * t^(n-k).
E.g.f.: exp(exp(x)*(exp(x*y)-1)). - Vladeta Jovovic, Dec 08 2008
Showing 1-1 of 1 results.